Answer:
Explanation:
Given that:
length of side , a = 0.5 m
charge , q = 6.65 mC
length of diagonal , d = 0.5 * sqrt(2)
d = 0.707 m
F is the force due to adjacent particle ,
F1 is the force due to diagonal particle
Now , for the net charge on a particle
Fnet = 2 * F * cos(45) + F1
Fnet = 2*cos(45) * k * q^2/a^2 + k * q^2/d^2
Fnet = 9*10^9 * 0.00665^2 * (2* cos(45)/.5^2 + 1/.707^2)
Fnet = 3.05 *10^6 N
the magnitude of net force acting on each particle is 3.05 *10^6 N
part B)
for the direction of particle
d) along the line between the charge and the center of the square outward of the center
When you turn on a fan its electrical energy changes into kinetic energy
If the rocket it heavy and tall the distance wouldn't go very far but if the rocket was little and had no weight on it, it would go farther than the heavier one because of density/mass in the rocket
Answer:A
Explanation:Actually it’s no A i actually don’t know it, I’m just doing this because I have to do it.
I'm pretty sure it's the neutron star.