Answer:
E₁ / E₂ = M / m
Explanation:
Let the electric field be E₁ and E₂ for ions and electrons respectively .
Force on ions = E₁ e where e is charge on ions .
Acceleration on ions a = E₁ e / M . Let initial velocity of both be u . Final velocity v = 0
v² = u² - 2as
0 = u² - 2 x E₁ e d / M
u² = 2 x E₁ e d / M
Similarly for electrons
u² = 2 x E₂ e d / m
Hence
2 x E₁ e d / M = 2 x E₂ e d / m
E₁ / E₂ = M / m
Answer:
The sled needed a distance of 92.22 m and a time of 1.40 s to stop.
Explanation:
The relationship between velocities and time is described by this equation:
, where
is the final velocity,
is the initial velocity,
the acceleration, and
is the time during such acceleration is applied.
Solving the equation for the time, and applying to the case:
, where
because the sled is totally stopped,
is the velocity of the sled before braking and,
is negative because the deceleration applied by the brakes.
In the other hand, the equation that describes the distance in term of velocities and acceleration:
, where
is the distance traveled,
is the initial velocity,
the time of the process and,
is the acceleration of the process.
Then for this case the relationship becomes:
.
<u>Note that the acceleration is negative because is a braking process.</u>
Most geologists accept radiometric dating techniques as valid because radioactive elements decay at a constant and measurable rate.
Answer: Option C
<u>Explanation:</u>
Scientists prefer radioactive dating to carbon dating because it is more accurate in measuring. The analysis depends upon the radioactive decay of radioactive isotopes of any matter in a given rock or soil.
The parent atoms and daughter atoms are compared while studying, and hence age can be calculated easily. Radioactive decay depends upon the given half-life of the atom, which is a constant and is known. So, it would be very easy to calculate the number of progeny atoms and parent atoms and find out their age.
The car is accelerating at 3 m/s² in the positive direction (to the right). By Newton's second law, the net force on the car in this direction is
∑ F = F[a] - F[f] - F[air] = ma
3100 N - 200 N - F[air] = (650 kg) (3 m/s²)
Solve for F[air] :
F[air] = 3100 N - 200 N - (650 kg) (3 m/s²)
F[air] = 3100 N - 200 N - 1950 N
F[air] = 950 N