Answer:
The molecules absorb heat and acquire more kinetic energy.
Explanation:
In a solid, the solids only vibrate about their mean positions but do not translate. When energy is supplied to the molecule in the form of heat, the molecules vibrate faster. Eventually, they acquire sufficient energy to leave their mean positions and translate. Hence the solid crystal collapses.
When ice is heated, water molecules acquire sufficient kinetic energy to translate. The intermolecular bonds are gradually broken in the solid framework as heat is absorbed. The heat required for this is known as the latent heat of fusion.
The temperature remains constant until phase transition is over, then temperature rise resumes.
Answer:
the answer is helium but more of then but for now use helium
On the bottom
1. sharing electrons
2. the middle two dots between the F:F
Answer:- 0.134 seconds
Solution:- The speed is given as
and the circumference is 24900 miles which is same as the distance light have to covered. It asks to calculate the time required to cover this distance by the light.
We need to do unit conversion from miles to meter as the speed is given in meter per second.
1 mile = 1609.34 meter
So, 
= 40072566 meters
Know that, 
It's rearranged to time as, 
Let's plug in the values in it:

= 0.134 seconds
So, the light would take 0.134 seconds to travel the mentioned speed. The answer without the unit is 0.134.
Answer:
c = 100 J/g.°C
Explanation:
Given data:
Mass of lime = 20 g
Heat absorbed = 80,000 J
Initial temperature = 10°C
Final temperature = 50°C
Specific heat capacity of lime = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 50°C - 10°C
ΔT = 40°C
80,000 J = 20 g×c×40°C
80,000 J = 800°C×c
c = 80,000 J /800g.°C
c = 100 J/g.°C