Enthalpy is a thermodynamic quantity that describes the heat content of a system, that can not be measured directly. That's why we measure change in enthaply, measured in the units joules. The statement that e<span>nthalpy change depends on the rate at which a substance is heated or cooled is false. Enthalpy change depends only on the following factors:
-</span><span>physical state of reactants and products
- quantity of reactants</span><span>
- allotropic modifications
- temperature and pressure</span><span>
</span>
Transferring or sharing electrons between atoms forms a covalent bond.<span> Covalent
bonding is when atoms share electrons. It is a chemical bond that involves the
sharing of electron pairs. These pairs are called bonding pairs. Examples of
compounds that has covalent bonds are CO2, organic compounds, lipids and
proteins.</span>
ANSWER:
What is the measured component of the orbital magnetic dipole moment of an electron with the values
(a) ml=3
(b )
ml= −4
a) -278 x
J/T
b) 3.71 x
J/T
STEP-BY-STEP EXPLANATION:
a) ml= 3
Цorb,z = ml Цв = - (3) * (9.27e - 24) = -278 x
J/T
b) ml= 3
Цorb,z = ml Цв = - (-4) * (9.27e - 24) = 3.71 x
J/T
Answer: <span>The molecules of a substance which must have the
<u>a</u></span>
<u>bility to move past one another</u> are said to be flexible.
Explanation: Those substances are said to be flexible which can be
bent without breaking. There are many substances which are
hard in nature but still can be bent. The hardness of such materials is due to
strong interactions between the molecules and the flexibility comes due to their
amorphous backbone. Therefore, greater the
crystalline level of macromolecules lesser is the flexibility and greater the amorphous character greater is the flexibility and vice versa. Also, the flexibility of polymers is increased by adding
plastisizers in it. Plastisizers make the hard polymers flexible by breaking the crosslinkers and enabling the macromolecules to move past one another.