Answer:
yes i think u are correct
Step-by-step explanation:
Sure with what? what subject?
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:

And the derivative of x:

Now, we can calculate the area of the surface:

We could calculate this integral (not very hard, but long), or use
(1),
(2) and
(3) to get:



Calculate indefinite integral:

And the area:
![A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}](https://tex.z-dn.net/?f=A%3D2%5Cpi%5Cint%5Climits_0%5E%7B10%7Dx%5Csqrt%7B4x%5E2%2B1%7D%5C%2Cdx%3D2%5Cpi%5Ccdot%5Cdfrac%7B1%7D%7B12%7D%5Cbigg%5B%5Cleft%284x%5E2%2B1%5Cright%29%5E%5Cfrac%7B3%7D%7B2%7D%5Cbigg%5D_0%5E%7B10%7D%3D%5C%5C%5C%5C%5C%5C%3D%20%5Cdfrac%7B%5Cpi%7D%7B6%7D%5Cleft%5B%5Cbig%284%5Ccdot10%5E2%2B1%5Cbig%29%5E%5Cfrac%7B3%7D%7B2%7D-%5Cbig%284%5Ccdot0%5E2%2B1%5Cbig%29%5E%5Cfrac%7B3%7D%7B2%7D%5Cright%5D%3D%5Cdfrac%7B%5Cpi%7D%7B6%7D%5CBig%28%5Cbig401%5E%5Cfrac%7B3%7D%7B2%7D-1%5E%5Cfrac%7B3%7D%7B2%7D%5CBig%29%3D%5Cboxed%7B%5Cdfrac%7B401%5E%5Cfrac%7B3%7D%7B2%7D-1%7D%7B6%7D%5Cpi%7D)
Answer D.
Answer:
Step-by-step explanation:
Given term: 
<em>In algebra, like terms are the terms which have the same variables with same powers. </em>
Here the variables are a and d, where d has power 3.
From the given options
is the right answers as it has the same variables and power.
Rest of other options are unlike terms to the given term.
Answer:
i think this is right but if its not please let me know its a guess im not very good at math