The pressure exerted when both gases are put together in a single 1 liter container is 5 atm.
<h3>What is pressure?</h3>
Pressure is the force exerted by any object on another object.
Given that, a and b separate 1 liter containers and exert pressure of 2 atm and 3 atm respectively.
When both gases a and b exert together, the pressure then
2 atm + 3 atm = 5 atm.
Thus, the pressure exerted when both gases are put together in a single 1 liter container is 5 atm.
Learn more about pressure
brainly.com/question/12977546
#SPJ4
The chemical formula for the compound containing 8.6 mol of sulfur and 3.42 mol of phosphorus is P₂S₅
<h3>How do I determine the formula of the compound?</h3>
From the question given above, the following data were obatined:
- Sulphur (S) = 8.6 moles
- Phosphorus (P) = 3.42 mole
- Chemical formula =?
The chemical formula of the compound can be obtained as follow:
Divide by their molar mass
S = 8.6 / 32 = 0.26875
P = 3.42 / 31 = 0.11032
Divide by the smallest
S = 0.26875 / 0.11032 = 2.44
P = 0.11032 / 0.11032 = 1
Multiply by 2 to express in whole number
S = 2.44 × 2 = 5
P = 1 × 2 = 2
Thus, the chemical formula is P₂S₅
Learn more about empirical formula:
brainly.com/question/9459553
#SPJ1
Answer:
ΔH°_rxn = -195.9 kJ·mol⁻¹
Explanation:
4NH₃(g) + 3O₂(g) ⟶ 2N₂(g) +6H₂O(g)
ΔH°_f/(kJ·mol⁻¹): -45.9 0 0 -241.8
The formula relating ΔH°_rxn and enthalpies of formation (ΔH°_f) is
ΔH°_rxn = ΣΔH°_f(products) – ΣΔH°_f(reactants)
ΣΔH°_f(products) = -6(241.8) = -1450.8 kJ
ΣΔH°_f(reactants) = -4(45.9) = -183.6 kJ
ΔH°_rxn = (-1450.8 + 183.6) kJ = -1267.2 kJ
Answer:
you must add 50 mL
Explanation:
Hi
KOH is a strong base and by adding 100mL 0.05M you will have an amount of 5 millimol.
NaCN is a base and by adding 50 mL 0,150 M you will have an amount of 7,5 mmol.
HCl is a acid and by adding 200 mL 0,075 M you will have an amount of 15 mmol.
The acid reacts with the bases leaving 2.5 mmol unreacted.
Na3PO4 is a base and by adding 50 mL 0,1 M you will have an amount of 5 mmol.
The 2.5 mmol of acid react with the base PO4 ^ -3 forming a regulatory solution of PO4 ^ -3 and HPO4 ^ -2 of pKa 2.12
5 mmol of acid (HNO3) must be added to obtain a regulatory solution formed by the same amount of HPO4 ^ -2 (2.5 mmol) and H2PO4 ^ -1 (2.5 mmol) with pKa 7.21
Considering a quantity of 5 mmol of HNO3 of concentration 0.1 M, 50 mL must be added.
To calculate the pH of the regulatory solution you should consider pH = pKa × Ca / Cb pH = 7.21 × 2.5 / 2.5 = 7.21 Being in the same solution the volume is the same and can be simplified to achieve a faster calculation.
successes with your homework
Answer:
3.54 mol
Explanation:
Step 1: Given data
- Temperature (T): 45.00 °C
Step 2: Convert "T" to Kelvin
We will use the following expression.
K = °C + 273.15
K = 45.00°C + 273.15 = 318.15 K
Step 3: Calculate the number of moles (n) of argon gas
We will use the ideal gas equation.
P × V = n × R × T
n = P × V/R × T
n = 2.50 atm × 37.0 L/(0.0821 atm.L/mol.K) × 318.15 K = 3.54 mol