Answer:
3. 76 g/ml^3
Explanation:
We are given the mass of the metal pellets which is 33.4 grams. To calculate the density of the metal, we need to divide the mass by the volume. The volume of the metal is not directly given so we need to find it ourselves. The water was initially 12.7 ml and then it rose to 21.6 ml after placing the metal pellets. This indicate that the volume of the metal pellets is 8.9 ml.

We can now use the density formula.



Answer:
C
Explanation:
Alcohols are organic molecules characterized majorly by the presence of the OH group in their molecule. The OH group is majorly responsible for several of their characteristics. This include the formation of hydrogen bonds between alcohol molecules. While this makes them more inorganic than most organic compounds, comparatively the hydrogen bonding formed in alcohols is not as strong as that which is present in water.
The higher strength of the hydrogen bonding is responsible for some comparable properties. While water boils at a temperature of 100 degrees Celsius, alcohol boils at a temperature of 78 degrees Celsius. This is an evidence to the fact that hydrogen bonding in alcohol is less stronger that that in water.
Answer:
57.6g
Explanation:
So, if in one mole of water, 16 g of oxygen atom is present. Then, in 3.6 moles of water, the mass of oxygen present will be 3.6×16=57.6g. Therefore, the amount of oxygen present in 3.6 g water is option (B)- 57.6 g.
1) d
2) b because the independent variable is the thing you change/control in an experiment
3) c because the dependent variable is the thing being measured in an experiment
4)hmm it might be d, as c and a are both correct as different sized feeders would make it an unfair test and different types of food would as well
5) c
6) a
7) b obviously because if he activated them at different times then the ones activated last would have an advantage
Answer:
Decomposition or cracking
Explanation:
In a decomposition or cracking reaction, a single compound produces two or more simpler substances.
It involves the formation of two or more products from a single reactant.
A → B + C
A is the single reactant
B and C are the products
The driving force for such a reaction is the is high positive heat of formation of the compound that is, extreme instability of the compound.