The maximum speed is 0.55 m/s
Explanation:
For an object in uniform circular motion, the force of friction between the object and the ground provides the centripetal force required to keep the body in motion. Therefore we can write:

where the term on the left is the frictional force and the term on the right is the centripetal force, and where
is the coefficient of static friction
m is the mass of the body
g is the gravitational acceleration
v is the speed of the body
r is the radius of the circular path
In this problem, we have:

r = 0.102 m

Substituting and re-arranging, we find the maximum speed v at which the salt shaker can rotate:

Learn more about circular motion:
brainly.com/question/2562955
brainly.com/question/6372960
#LearnwithBrainly
The answer is D. If you aren't consistent with your drop positions, then your data may be invalid. To be frank: it basically screws over the experiment.
Answer:
Steven has to row at a speed to reach the same horizontal spot at the other side of the river is, V = 6 m/s
Explanation:
Given data,
The river flowing south at the rate, v = 3 m/s
To reach the other side directly across the river, he aims the raft, Ф = 30°
The speed of his raft across the river is given by the formula,
V = v / Sin Ф
= 3 / Sin 30°
= 6 m/s
Steven has to row at a speed to reach the same horizontal spot at the other side of the river is, V = 6 m/s
Answer:
Rs. 432*10^3 (In kilowatts per hour)
I hope it will be useful.