Answer:
3.83 m/s
Explanation:
Given that,
Distance covered by Jan, d = 4 miles
1 mile = 1609.34 m
4 miles = 6437.38 m
Time, t = 28 minutes = 1680 s
Jan's average speed,
v = d/t

Hence, the average velocity of Jan is 3.83 m/s.
Answer:
After 4 s of passing through the intersection, the train travels with 57.6 m/s
Solution:
As per the question:
Suppose the distance to the south of the crossing watching the east bound train be x = 70 m
Also, the east bound travels as a function of time and can be given as:
y(t) = 60t
Now,
To calculate the speed, z(t) of the train as it passes through the intersection:
Since, the road cross at right angles, thus by Pythagoras theorem:


Now, differentiate the above eqn w.r.t 't':


For t = 4 s:

Answer:
Waves; wavelength; electromagnetic energy; ultraviolet light.
Explanation:
Sound are mechanical waves that are highly dependent on matter for their propagation and transmission.
Sound travels faster through solids than it does through either liquids or gases.
Light wave can be defined as an electromagnetic wave that do not require a medium of propagation for it to travel through a vacuum of space where no particles exist.
Hence, sound and light are both found as waves, with a variety of wavelength. The sun, a source of light waves specifically, releases a type of electromagnetic energy. It can be found as UVA or UVB types. These lights give off different levels of ultraviolet light, some of wich can be harmful.
Additionally, the ultraviolet spectrum is divided into three categories and these are; UVA, UVB and UVC.

As per as my knowledge
The speed of a wave in a medium is affected by <u>d</u><u>e</u><u>n</u><u>s</u><u>i</u><u>t</u><u>y</u>,<u> </u><u>w</u><u>a</u><u>v</u><u>e</u><u>l</u><u>e</u><u>n</u><u>g</u><u>t</u><u>h</u> and <u>t</u><u>e</u><u>m</u><u>p</u><u>e</u><u>r</u><u>a</u><u>t</u><u>u</u><u>r</u><u>e</u><u> </u>:)
(Good luck on your test and mark me brainliest if this helps)