1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erastovalidia [21]
3 years ago
14

An 85,000 kg stunt plane performs a loop-the-loop, flying in a 260-m-diameter vertical circle. at the point where the plane is f

lying straight down, its speed is 55 m/s and it is speeding up at a rate of 12 m/s per second.
a. what is the magnitude of the net force on the plane you can neglect air resistance.

b. what angle does the net force make with the horizontal let an angle above horizontal be positive and an angle below horizontal be negative
Physics
1 answer:
konstantin123 [22]3 years ago
7 0
A) When the plane is flying straight down, there are three forces acting on it:
- the centripetal force  F=m \frac{v^2}{r}, directed toward the center of the circle (so, horizontally)
- the weight of the plane: W=mg, downward, so vertically
- a third force, given by the propulsion of the plane, which is accelerating it towards the ground (because the problem says that the plane has an acceleration of a=12 m/s^2 towards the ground)

The radius of the circle is r= \frac{260 m}{2} = 130 m, so the centripetal force acting on the plane is
F_c=m \frac{v^2}{r} = \frac{(85000 kg)(55 m/s)^2}{130 m}=1.98 \cdot 10^6 N
On the vertical axis, we have two forces: the weight
W=mg=(85000 kg)(9.81 m/s^2)=8.34 \cdot 10^5 N
and the other force F given by the propulsion. Since we know that their sum should generate an acceleration equal to a=12 m/s^2, we can find the magnitude of this other force F by using Newton's second law:
F+mg=ma
F=m(a-g)=(85000kg)(12 m/s^2-9.81 m/s^2)=1.86 \cdot 10^5 N

So, the net force acting on the plane will be the resultant of the centripetal force (acting in the horizontal direction) and the two forces W and F (acting in the vertical direction):
R= \sqrt{(F_c^2+(W+F)^2}=
= \sqrt{(1.98\cdot 10^6N)^2+(8.34 \cdot 10^5N+1.86 \cdot 10^5 N)^2}  =2.23 \cdot 10^6 N

(b) The tangent of the angle with respect to the horizontal is the ratio between the sum of the forces in the vertical direction (taken with negative sign, since they are directed downward) and the forces acting in the horizontal direction, so:
\tan \theta =  \frac{-(W+F)}{F_c}= -0.5
And so, the angle is
\theta = \arctan (-0.5)=-26.8 ^{\circ}
 
You might be interested in
You are given two carts, a and
Aloiza [94]
The mass of a is smaller than the mass of b.
3 0
3 years ago
An electron moving with a velocity = 5.0 × 10 7 m/s enters a region of space where perpendicular electric and a magnetic fields
inna [77]

Answer:

The magnetic field is 2 \times 10^{-4} T

Explanation:

Given:

Velocity of electron v = 5 \times 10^{7} \frac{m}{s}

Electric field E = 10^{4} \frac{V}{m}

The force on electron in magnetic field is given by,

 F = qvB \sin \theta                      ......(1)

The force on electron in electric field is given by,

 F = qE                               ......(2)

Compare both equation,

   qE = qvB \sin \theta

Here \sin \theta = 1

  E = vB

  B= \frac{E}{v}

  B = \frac{10^{4} }{5 \times 10^{7} }

  B = 2 \times 10^{-4} T

Therefore, the magnetic field is 2 \times 10^{-4} T

5 0
3 years ago
Scott cuts a one meter long wire into five equal parts. What is the length of each part of the wire? (2 points) 0.02 centimeters
kompoz [17]
20 centimeters. 100 centimeters in a meter. 100/5= 20
4 0
3 years ago
Read 2 more answers
A boy runs 400m at an average speed of 4.0m/s he runs the first 200m in 40 s how long does he take to run the second 200m?
IRISSAK [1]
If he runs at the same speed he will cover next 200m in 40s
that is at the average of 4.0m
8 0
3 years ago
To understand how to find the velocities of objects after a collision.
trasher [3.6K]

There are some information missing on Part D: Let the mass of object 1 be m and the mass of object 2 be 3m. If the collision is perfectly inelastic, what are the velocities of the two objects after the collision? Give the velocity v_1 of object one, followed by object v_2 of object two, separated by a comma. Express each velocity in terms of v.

Answer: Part A: v_1 = 0; v_2 = v

Part B: v_1 = v_2 = \frac{v}{2}

Part C: v_1 = \frac{v}{3}; v_2 = \frac{4v}{3}

Part D: v_1 = v_2 = \frac{v}{4}

Explanation: In elastic collisions, there no loss of kinetic energy and momentum is conserved. Momentum is determined as p = m.v and kinetic energy as K = \frac{1}{2}m.v^{2}

Conserved means that the amount of initial momentum is equal to the amount of final momentum:

m_{1}.v_{1i} + m_{2}.v_{2i} = m_{1}.v_{1f} + m_{2}.v_{2f}

No loss of energy means that initial kinietc energy is the same as the final kinetic energy:

\frac{1}{2}(m_{1}.v_{1i} + m_{2}.v_{2i}) = \frac{1}{2} (m_{1}.v_{1f} + m_{2}.v_{2f}  )

To determine the final velocities of each object, there are 2 variables and two equations, so working those equations, the result is:

v_{2f} = \frac{2.m_{1} } {m_{1} + m_{2} }.v_{1i}  + \frac{(m_{2} - m_{1})}{m_{1} + m_{2} } . v_{2i}

v_{1f} = \frac{m_{2} - m_{1} }{m_{1} + m_{2} } . v_{1i} + \frac{2.m_{2} }{m_{1} + m_{2} } .v_{2i}

For all the collisions, object 2 is static, i.e. v_{2i} = 0

<u>Part A</u>: Both objects have the same mass (m), v_{1i} = v and collision is elastic:

v_1 = \frac{m_{2} - m_{1}}{m_{1} + m_{2} } . v_{1i}

v_1 = 0

v_2 = \frac{2.m_{1} }{m_{1} + m_{2}}.v_{1i}

v_2 = \frac{2.m}{m+m}.v

v_2 = v

When the masses are the same and there is an object at rest, the object in movement stops and the object at rest has the same same velocity as the object who hit it.

<u>Part B</u>: Same mass but collision is inelastic: An inelastic collision means that after it happens, the two objects has the same final velocity, then:

m_{1}.v_{1i} + m_{2}.v_{2i} = m_{1}.v_{1f} + m_{2}.v_{2f}

m_{1}.v_{1i} = (m_{1}+m_{2}).v_{f}

v_{f} =  \frac{m_{1}.v_{1i}}{m_{1} + m_{2} }

v_1 = v_2 = \frac{m.v}{m+m}

v_1 = v_2 = \frac{v}{2}

<u>Part C:</u> Object 1 is 2m, object 2 is m and elastic collision:

v_1 = \frac{m_{2} - m_{1}}{m_{1} + m_{2} } . v_{1i}

v_1 = \frac{2m - m}{2m + m } . v

v_1 = \frac{v}{3}

v_2 = \frac{2.m_{1} }{m_{1} + m_{2}}.v_{1i}

v_2 = \frac{2.2m}{2m+m}.v

v_2 = \frac{4v}{3}

<u>Part D</u>: Object 1 is m, object is 3m and collision is inelastic:

v_1 = v_2 = v_{f} =  \frac{m_{1}.v_{1i}}{m_{1} + m_{2} }

v_1 = v_2 = \frac{m}{m+3m}.v

v_1 = v_2 = \frac{v}{4}

5 0
3 years ago
Other questions:
  • In astronomy, the term perihelion refers to the point in the orbit of an asteroid, comet, or planet when it is closest to the su
    15·1 answer
  • A certain light truck can go around a flat curve having a radius of 150 m with a maximum speed of 28.0 m/s. With what maximum sp
    5·1 answer
  • What is a compound?
    15·1 answer
  • Which piece of evidence contradicts the steady state theory?
    14·2 answers
  • 1. An isotope has the same ________, but a different ________ .
    7·1 answer
  • A student sees a newspaper ad for an apartment that has 2330 square feet (ft2) of floor space. How many square meters of area ar
    13·1 answer
  • A long, vertical pipe (radius R) filled with an incompressible Newtonian fluid, is initially capped at its lower end. At some in
    13·1 answer
  • Suppose you are in a moving car and the motor stops running. You step on the brakes and slow the car to half speed. If you relea
    5·1 answer
  • In which application is a magnet used to store information?
    6·2 answers
  • State four factors affecting thermal conductivity​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!