Light year is the unit of distance. It is the distance that an object travels in one year with the speed of light.
In short, Your Answer would be "Distance"
Hope this helps!
It looks that way cause the earth is rotation on its axis
The formula we can use in this case is:
v = v0 + a t
where v is final velocity, v0 is initial velocity, a is
acceleration and t is time
So finding for v0:
v0 = v – a t
v0 = 43.7 – (2.5) 2.7
v0 = 36.95 m/s
The force on the proton is 17.4 N.
<h3>What is the force on the proton?</h3>
Now we know that the proton is positively charged and that the force on the charge as it moved through the magnetic field could be given by the relation; F = qvB
Where;
F = force
q = charge
v = velocity
B = magnetic field
Having said this, we can see that;
q = 1.601019 As or C
v = 2.4105 m/s
T = 4.5 T
F = 1.601019 As * 2.4105 m/s * 4.5 T
F = 17.4 N
Learn more about magnetic force:brainly.com/question/12824331
#SPJ1
Answer:
w = √[g /L (½ r²/L2 + 2/3 ) ]
When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE
Explanation:
We can simulate this system as a physical pendulum, which is a pendulum with a distributed mass, in this case the angular velocity is
w² = mg d / I
In this case, the distance d to the pivot point of half the length (L) of the cylinder, which we consider long and narrow
d = L / 2
The moment of inertia of a cylinder with respect to an axis at the end we can use the parallel axes theorem, it is approximately equal to that of a long bar plus the moment of inertia of the center of mass of the cylinder, this is tabulated
I = ¼ m r2 + ⅓ m L2
I = m (¼ r2 + ⅓ L2)
now let's use the concept of density to calculate the mass of the system
ρ = m / V
m = ρ V
the volume of a cylinder is
V = π r² L
m = ρ π r² L
let's substitute
w² = m g (L / 2) / m (¼ r² + ⅓ L²)
w² = g L / (½ r² + 2/3 L²)
L >> r
w = √[g /L (½ r²/L2 + 2/3 ) ]
When the mass of the cylinder changes if its external dimensions do not change the angular velocity DOES NOT CHANGE