Answer:
53.895 m.
Explanation:
Using the equation of motion,
v² = u² + 2as .............. Equation 1
Where v = final velocity of the swan, u = initial velocity of the swan, a = acceleration of the swan, s = distance covered by the swan.
make s the subject of the equation,
s = (v² - u²)/2a----------- Equation 2
Given: v = 6.4 m/s, u = 0 m/s ( from rest) a = 0.380 m/s².
Substitute into equation 2
s = (6.4²-0²)/(2×0.380)
s = 40.96/0.76
s = 53.895 m.
Hence the swan will travel 53.895 m before becoming airborne.
Airports use ramps to connect the plane to the airport and towing trucks use ramps to get the vehicles on the truck
Evaporation . Because it drys up and turns into gas
Answer:
Time of flight A is greatest
Explanation:
Let u₁ , u₂, u₃ be their initial velocity and θ₁ , θ₂ and θ₃ be their angle of projection. They all achieve a common highest height of H.
So
H = u₁² sin²θ₁ /2g
H = u₂² sin²θ₂ /2g
H = u₃² sin²θ₃ /2g
On the basis of these equation we can write
u₁ sinθ₁ =u₂ sinθ₂=u₃ sinθ₃
For maximum range we can write
D = u₁² sin2θ₁ /g
1.5 D = u₂² sin2θ₂ / g
2 D =u₃² sin2θ₃ / g
1.5 D / D = u₂² sin2θ₂ /u₁² sin2θ₁
1.5 = u₂ cosθ₂ /u₁ cosθ₁ ( since , u₁ sinθ₁ =u₂ sinθ₂ )
u₂ cosθ₂ >u₁ cosθ₁
u₂ sinθ₂ < u₁ sinθ₁
2u₂ sinθ₂ / g < 2u₁ sinθ₁ /g
Time of flight B < Time of flight A
Similarly we can prove
Time of flight C < Time of flight B
Hence Time of flight A is greatest .
Answer:
wen you stick to mangnetits togater
Explanation: