1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
JulsSmile [24]
3 years ago
7

An electric field from a charge has a magnitude of 1.5 × 104 N/C at a certain location that points inward. If another charge wit

h a magnitude of +3.0 × 10−6 C is brought near it, what is the strength of the electrostatic force that acts on this charge and how do the two charges behave?
Physics
2 answers:
zysi [14]3 years ago
6 0

Answer:

-0.045 N, they will attract each other

Explanation:

The strength of the electrostatic force exerted on a charge is given by

F=qE

where

q is the magnitude of the charge

E is the electric field magnitude

In this problem,

q=3.0\cdot 10^{-6}C

E=-1.5\cdot 10^4 N/C (negative because inward)

So the strength of the electrostatic force is

F=(-3.0\cdot 10^{-6}C)(1.5\cdot 10^4 N/C)=-0.045 N

Moreover, the charge will be attracted towards the source of the electric field. In fact, the text says that the electric field points inward: this means that the source charge is negative, so the other charge (which is positive) is attracted towards it.

FrozenT [24]3 years ago
5 0

Answer:

The correct answer is actually -0.045; attract each other

Explanation:

You might be interested in
Which is a characteristic of thermal energy transfer through convection
Lynna [10]

Answer:  The thermal energy transfer is When a fluid, such as air or a liquid, is heated and then travels away from the source, it carries the thermal energy along.

Explanation: heat transfer is called convection.  hopefully this was helpful.

6 0
3 years ago
If a FM radio station broadcasts at 80. 3 MHz (megahertz), what is its wavelength in m (speed of light 3. 0 x 108 m/s)
hammer [34]

Answer:

Wavelength = 3.74 m

Explanation:

In order to find wavelength in "metres", we must first convert megahertz to hertz.

1 MHz = 1 × 10⁶ Hz

80.3 Mhz = <em>x</em>

<em>x </em>= 80.3 × 1 × 10⁶ = 8.03 × 10⁷ Hz

The formula between wave speed, frequency and wavelength is:

v = fλ  [where v is wave speed, f is frequency and λ is wavelength]

Reorganise the equation and make λ the subject.

λ = v ÷ f

λ = (3 × 10⁸) ÷ (8.03 × 10⁷)

λ = 3.74 m [rounded to 3 significant figures]

8 0
2 years ago
​A piston–cylinder assembly contains 5.0 kg of air, initially at 2.0 bar, 30 oC. The air undergoes a process to a state where th
vlada-n [284]

Answer:

Explanation:

The process is isothermic,  as P V = constant .

work done = 2.303 n RT log P₁ / P₂

= 2.303 x 5 / 29 x 8.3 x 303  log 2 / 1 kJ

= 300.5k J

This energy in work done by the gas will come fro heat supplied as internal energy is constant due to constant temperature.

heat supplied  = 300.5k J

specific volume is volume per unit mass

v / m

pv = n RT

pv  = m / M  RT

v / m = RT / p M

specific volume = RT / p M

option B is correct.

5 0
3 years ago
The particle, initially at rest, is acted upon only by the electric force and moves from point a to point b along the x axis, in
bezimeni [28]

1) Potential difference: 1 V

2) V_b-V_a = -1 V

Explanation:

1)

When a charge moves in an electric field, its electric potential energy is entirely converted into kinetic energy; this change in electric potential energy is given by

\Delta U=q\Delta V

where

q is the charge's magnitude

\Delta V is the potential difference between the initial and final position

In this problem, we have:

q=4.80\cdot 10^{-19}Cis the magnitude of the charge

\Delta U = 4.80\cdot 10^{-19}J is the change in kinetic energy of the particle

Therefore, the potential difference (in magnitude) is

\Delta V=\frac{\Delta U}{q}=\frac{4.80\cdot 10^{-19}}{4.80\cdot 10^{-19}}=1 V

2)

Here we have to evaluate the direction of motion of the particle.

We have the following informations:

- The electric potential increases in the +x direction

- The particle is positively charged and moves from point a to b

Since the particle is positively charged, it means that it is moving from higher potential to lower potential (because a positive charge follows the direction of the electric field, so it moves away from the source of the field)

This means that the final position b of the charge is at lower potential than the initial position a; therefore, the potential difference must be negative:

V_b-V_a = - 1V

8 0
2 years ago
Which of these processes describes the effect Earth's atmosphere has on Earth's hydrosphere?
Ede4ka [16]
Warm, moist air increasing ocean temp
6 0
3 years ago
Other questions:
  • If Bob applies 10 N of force on box, what will happen to the acceleration of the box if he adds more weight to it?
    9·2 answers
  • Suppose you are driving in a car. A truck drives past you, traveling in the same direction you are driving. Which statement best
    5·1 answer
  • A heavy object falls with the acceleration as a light object during free fall. why?
    5·1 answer
  • How are calculation for velocity and speed different
    6·1 answer
  • PLEASE HELP ME! There are an estimated 200-400 billion stars in our galaxy, and possibly 100 billion galaxies in our universe. W
    13·1 answer
  • There is a girl pushing on a large stone sphere. The sphere has a mass of 8200 kgand a radius of 90 cm and floats with nearly ze
    15·1 answer
  • A brisk walk has a constant speed of 1.7 m/s. how far could a person walk in 160 seconds?
    11·1 answer
  • The atoms of a molecule come from two or more?
    7·2 answers
  • They believes studying behavior, the mind and circumstances leads to
    5·2 answers
  • A certain FM radio station broadcasts electromagnetic waves at a frequency of 60,500,000 Hz. These waves travel at a velocity of
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!