Answer:
Acceleration = 9 × 10^5 m/s^2 ( deceleration )
Explanation:
From the first equation of motion:
V = u + at
15000 = 30000 + 60a
a = ( 15000-30000)/60
a = 9 × 10^5 m/s^2
Answer:
The fundamental frequency of can is 2.7 kHz.
Explanation:
Given that,
A typical length for the auditory canal in an adult is about 3.1 cm, l = 3.1 cm
The speed of sound is, v = 336 m/s
We need to find the fundamental frequency of the canal. For a tube open at only one end, the fundamental frequency is given by :

So, the fundamental frequency of can is 2.7 kHz. Hence, this is the required solution.
-- Equations #2 and #6 are both the same equation,
and are both correct.
-- If you divide each side by 'wavelength', you get Equation #4,
which is also correct.
-- If you divide each side by 'frequency', you get Equation #3,
which is also correct.
With some work, you can rearrange this one and use it to calculate
frequency.
Summary:
-- Equations #2, #3, #4, and #6 are all correct statements,
and can be used to find frequency.
-- Equations #1 and #5 are incorrect statements.
Sure, if the mortality (death) rate is even higher than the birth rate.
Answer:
a) Linear equation
Explanation:
Definition of acceleration

if a=constant and we integrate the last equation

So the relation between the time and the velocity is linear. If we plot the velocity in function of time, the plot is a line, and the acceleration is the slope of this line.