Answer:
226.2 m/sec
Explanation:
We have given
The plank's constant
Mass of electron
Now according to Heisenberg uncertainty principle
So
Answer:
Explanation:
Equivalent resistance is 1 / ((1/1) + (1/2) + (1/2) + (1/3)) = 3/7 Ω
I = V/R = 4(7/3) = 28/3 = 9.3 A
Answer: acceleration:
velocity:
Explanation:
The complete question is written bellow:
<em>A cat is moving at 18 m/s when it accelerates at </em><em> for 2 seconds. What is his new velocity? </em>
<em />
In this situation the following equation will be useful:
Where:
is the cat’s final velocity (new velocity)
is the cat’s initial velocity
is the cat's acceleration
is the time
Solving the equation:
This is the cat's new velocity
1.3 second of time will be required for reflected sunlight to travel from the Moon to Earth if the distance between Earth and the Moon is 3.85 × 105 km
<h3>
What is Speed ?</h3>
Speed is the distance travelled per time taken. It is a scalar quantity. And the S.I unit is meter per second. That is, m/s
In the given question, we want to find how much time is required for reflected sunlight to travel from the Moon to Earth if the distance between Earth and the Moon is 3.85 × 10^5 km.
What are the parameters to consider ?
The parameters are;
- The distance S = 3.85 × km
- The Speed of Light C = 3 × m/s
Speed = distance S ÷ Time t
Convert kilometer to meter by multiplying it by 1000
C = S/t
3 × = 3.85 × / t
Make t the subject of formula
t = 3.85 × / 3 ×
t = 1.2833
t = 1.3 s
Therefore, 1.3 second of time will be required for reflected sunlight to travel from the Moon to Earth if the distance between Earth and the Moon is 3.85 × 105 km
Learn more about Speed here: brainly.com/question/4931057
#SPJ1