1) <span>A solar eclipse that occurs when the new moon is too far from earth to completely cover the sun can be either a partial solar eclipse or an -->
Answer: ANULAR ECLIPSE. Since the moon is too far, it will cover only a part of the sun, and only the external ring of the moon will be visible; this is called anular eclipse.
2) </span><span>anyone looking from the night side of earth can, in principle, see a -->
Answer: LUNAR ECLIPSE. If the moon is the right position, and the Earth's shadow covers partially or totally the moon, then a lunar eclipse occurs.
3) </span><span>during some lunar eclipses, the moon's appearance changes only slightly, because it passes only through the part of earth's shadow called the -->
Answer: PENUMBRA.
4) </span><span>a ... can occur only when the moon is new and has an angular size larger than the sun in the sky -->
Answer: TOTAL SOLAR ECLIPSE. When the moon is new, it means it is between the sun and the Earth, and its dark side faces the Earth. If the moon's angular size is also larger than the sun angular size, than it will completely cover the sun, and a total solar eclipse occurs.
5) </span><span>a partial lunar eclipse begins when the moon first touches earth's -->
Answer: SHADOW. The Earth's shadow will start to cover the moon, and partial lunar eclipse will start.
6) </span><span> a point at which the moon crosses earth's orbital plane is called a(n) -->
Answer: NODE. Eclipses occur only when the Moon is at or close to a node, otherwise sun, earth and moon are not "aligned".</span>
Answer:
Juno scientific payload includes:
- A gravity/radio science system (Gravity Science)
- A six-wavelength microwave radiometer for atmospheric sounding and composition (MWR)
- A vector magnetometer (MAG)
- Plasma and energetic particle detectors (JADE and JEDI)
- A radio/plasma wave experiment (Waves)
- An ultraviolet imager/spectrometer (UVS)
- An infrared imager/spectrometer (JIRAM)
Explanation:
Each mission of NASA has a specific set of instruments that it uses to perform scientific experiments on the desired heavenly body. In case of Juno, the mission for Jupiter has a series of instruments that would study domains of gravitational forces, magnetic effect, particle detection, radiation detection, UV/IR imaging, and plasma experiments.
Answer:
A) conductors
Explanation:
A conductor can be defined as any material or object that allows the free flow of current or electrons (charge) in one or more directions in an electrical circuit. Some examples of a conductor are metals, tungsten, copper, aluminum, iron, graphite, etc.
Basically, the main purpose of a conductor in physics is to provide a low-resistance path between electrical circuits or components. This low-resistance path is to ensure that the electrical components allows the free flow of electrons and thus, enabling charge transfer.
Hence, the electrons in conductors move about more freely than the electrons in insulators which is why this type of material can be used to create electric circuits because it would significantly provide a low-resistance path between the electric circuits.
Answer:
vDP = 21.7454 m/s
θ = 200.3693°
Explanation:
Given
vDE = 7.5 m/s
vPE = 20.2 m/s
Required: vDP
Assume that
vDE to be in direction of - j
vPE to be in direction of i
According to relative motion concept the velocity vDP is given by
vDP = vDE - vPE (I)
Substitute in (I) to get that
vDP = - 7.5 j - 20.2 i
The magnitude of vDP is given by
vDP = √((- 7.5)²+(- 20.2)²) m/s = 21.7454 m/s
θ = Arctan (- 7.5/- 20.2) = 20.3693°
θ is in 3rd quadrant so add 180°
θ = 20.3693° + 180° = 200.3693°