5) The relation between intensity and current appears linear for intensity of 300 or more (current = intensity/10). For intensity of 150, current is less than that linear relation would predict. This seems to support the notion that current will go to zero for zero intensity. Current might even be negative for zero intensity since the line through the points (300, 30) and (150, 10) will have a negative intercept (-10) when current is zero.
Usually, we expect no output from a power-translating device when there is no input, so we expect current = 0 when intensity = 0.
6) We have no reason to believe the linear relation will not continue to hold for values of intensity near those already shown. We expect the current to be 100 for in intensity of 1000.
8) Apparently, times were only measured for 1, 3, 6, 8, and 12 laps. The author of the graph did not want to extrapolate beyond the data collected--a reasonable choice.
Answer:
Mean = £1.8 million
Step-by-step explanation:
The MEAN is the sum of all the numbers divided by the number of numbers.
- <u>There are 5 numbers in total</u>
- <u>The sum is
million</u>
Hence the mean is
million
I've answered your other question as well.
Step-by-step explanation:
Since the identity is true whether the angle x is measured in degrees, radians, gradians (indeed, anything else you care to concoct), I’ll omit the ‘degrees’ sign.
Using the binomial theorem, (a+b)3=a3+3a2b+3ab2+b3
⇒a3+b3=(a+b)3−3a2b−3ab2=(a+b)3−3(a+b)ab
Substituting a=sin2(x) and b=cos2(x), we have:
sin6(x)+cos6(x)=(sin2(x)+cos2(x))3−3(sin2(x)+cos2(x))sin2(x)cos2(x)
Using the trigonometric identity cos2(x)+sin2(x)=1, your expression simplifies to:
sin6(x)+cos6(x)=1−3sin2(x)cos2(x)
From the double angle formula for the sine function, sin(2x)=2sin(x)cos(x)⇒sin(x)cos(x)=0.5sin(2x)
Meaning the expression can be rewritten as:
sin6(x)+cos6(x)=1−0.75sin2(2x)=1−34sin2(2x)
Answer:
4. 9
5. 4
6. 35
Step-by-step explanation: