The containers must be spheres of radius = 6.2cm
<h3>
How to minimize the surface area for the containers?</h3>
We know that the shape that minimizes the area for a fixed volume is the sphere.
Here, we want to get spheres of a volume of 1 liter. Where:
1 L = 1000 cm³
And remember that the volume of a sphere of radius R is:

Then we must solve:
![V = \frac{4}{3}*3.14*R^3 = 1000cm^3\\\\R =\sqrt[3]{ (1000cm^3*\frac{3}{4*3.14} )} = 6.2cm](https://tex.z-dn.net/?f=V%20%3D%20%5Cfrac%7B4%7D%7B3%7D%2A3.14%2AR%5E3%20%3D%201000cm%5E3%5C%5C%5C%5CR%20%3D%5Csqrt%5B3%5D%7B%20%20%281000cm%5E3%2A%5Cfrac%7B3%7D%7B4%2A3.14%7D%20%29%7D%20%3D%206.2cm)
The containers must be spheres of radius = 6.2cm
If you want to learn more about volume:
brainly.com/question/1972490
#SPJ1
Answer:
x = 13°
Step-by-step explanation:
5x+15°=7x-11°
5x-7x = -11°-15°
-2x = -26° divide both sides by -2
x = 13°
5x+15° = 5×13°+15° = 80°
7x-11° = 7×13° -11°. = 80°
Answer:
Equation of movement y(t)

Amplitude: 1 inch
Period: 0.628 seconds
Step-by-step explanation:
If there is no friction, the amplitude will be the length it was streched from the equilibrium. In this case, this value is 1 inch

The period depends on the mass and the spring constant.
The formula for the period is:

The model y(t) for the movement of the mass-spring system is

In order to determine whether the equations are parallel, perpendicular, or neither, let's simply each equation into a slope-intercept form or basically, solve for y.
Let's start with the first equation.

Cross multiply both sides of the equation.


Subtract 6x on both sides of the equation.


Divide both sides of the equation by -5.


Therefore, the slope of the first equation is 4/5.
Let's now simplify the second equation.

Add x on both sides of the equation.


Divide both sides of the equation by -4.


Therefore, the slope of the second equation is -5/4.
Since the slope of each equation is the negative reciprocal of each other, then the graph of the two equations is perpendicular to each other.
I’m not sure I only answer these for the points :)