Answer:
Because the ball is dropped, we are going to assume its initial velocity is 0. With that said, acceleration is essentially the change in the velocity versus the change in time, hence the unit m/s^2, which can be thought of as “meters per second per second.” The only force acting on the ball is gravity.
That being said, you can simply divide the change in velocity by the change in time, giving you an answer of 9.8 m/s^2, which is the value of g. Even if they did not give you a time, the answer would still always be the value of g (that is if the question pertains to earth), as acceleration due to gravity is a constant.
Explanation:
Please mark brainliest
Answer:
SORRY NOONE CAN HELP YOU>>> YOU OUR A LOST CAUSE
Explanation:
sorry the photo is blocked on my computer, but that doesnt mean your a lost cause..... have a good day
Answer:
285 seconds
Explanation:
Jenny speed is 3.8 m/s
Alyssa speed in 4.0 m/s
Alyssa starts after 15 seconds
Find the distance covered by Jenny, when Alyssa starts
Distance=Speed*time
Distance covered by Jenny in 15 seconds= 3.8×15=57m
Relative speed of the two members heading same direction will be;
4.0m/s-3.8m/s=0.2m/s
To find the time Alyssa catch up with Jenny you divide the distance to be covered by Alyssa by the relative speed of the two
Distance=57m, relative speed=0.2m/s t=57/0.2 =285 seconds
=4.75 minutes
Answer:
The correct answer to the question is;
North
Explanation:
Fleming's left hand rule states that the direction of a magnetic field acting on a current carrying conductor is perpendicular to both the force acting on the current carrying conductor and the direction of the current.
Therefore, since the direction of the current is upward and a force is acting with a direction towards the east of the wire then the direction of the magnetic field is northwards.
Explanation:
... in every interaction, there is a pair of forces acting on the two interacting objects. The size of the force on the first object equals the size of the force on the second object. The direction of the force on the first object is opposite to the direction of the force on the second object. Forces always come in pairs - equal and opposite action-reaction force pairs.