Do you mean 5+7?
If so, that equals 12!
Answer: 6
Step-by-step explanation:
Answer:
7
Step-by-step explanation:
f(x) = 2x^3 + x^2 − 3x + 1
f'(x) = 6x^2 + 2x − 3
The slope at -2:
f'(-2) = 6(-2)^2 + 2(-2) − 3
f'(-2) = 24 + -4 − 3
f'(-2) = 17
-----
The slope at 0:
f'(0) = 6(0)^2 + 2(0) − 3
f'(0) = − 3
The average rate of change is (17+(-3))/2, or 14/2, or 7
I think it may be 30 but I’m not sure
Answer:

Step-by-step explanation:
We know that:
In a deck of 52 cards there are 4 aces.
Therefore the probability of obtaining an ace is:
P (x) = 4/52
The probability of not getting an ace is:
P ('x) = 1-4 / 52
P ('x) = 48/52
In this problem the number of aces obtained when extracting cards from the deck is a discrete random variable.
For a discrete random variable V, the expected value is defined as:

Where V is the value that the random variable can take and P (V) is the probability that it takes that value.
We have the following equation for the expected value:

In this problem the variable V can take the value V = 9 if an ace of the deck is obtained, with probability of 4/52, and can take the value V = -1 if an ace of the deck is not obtained, with a probability of 48 / 52
Therefore, expected value for V, the number of points obtained in the game is:

So:
