Answer:
![\bar X = 45.1625](https://tex.z-dn.net/?f=%5Cbar%20X%20%3D%2045.1625)
And the sample variance is given by:
![s^2 = \frac{\sum_{i=1}^n (X_i-\bar X)^2}{n-1}](https://tex.z-dn.net/?f=s%5E2%20%3D%20%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5En%20%28X_i-%5Cbar%20X%29%5E2%7D%7Bn-1%7D)
And replacing we got:
![s^2= 0.00262\approx 0.003](https://tex.z-dn.net/?f=%20s%5E2%3D%200.00262%5Capprox%200.003)
And this one is the best estimator for the population variance ![\sigma^2](https://tex.z-dn.net/?f=%5Csigma%5E2)
Step-by-step explanation:
For this case we have the following data:
45.15,45.12,45.19,45.08,45.21,45.17,45.14,45.24
The first step would be calculate the sample mean given by:
![\bar X = \frac{\sum_{i=1}^n X_i}{n}](https://tex.z-dn.net/?f=%5Cbar%20X%20%3D%20%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5En%20X_i%7D%7Bn%7D)
And replacing we got:
![\bar X = 45.1625](https://tex.z-dn.net/?f=%5Cbar%20X%20%3D%2045.1625)
And the sample variance is given by:
![s^2 = \frac{\sum_{i=1}^n (X_i-\bar X)^2}{n-1}](https://tex.z-dn.net/?f=s%5E2%20%3D%20%5Cfrac%7B%5Csum_%7Bi%3D1%7D%5En%20%28X_i-%5Cbar%20X%29%5E2%7D%7Bn-1%7D)
And replacing we got:
![s^2= 0.00262\approx 0.003](https://tex.z-dn.net/?f=%20s%5E2%3D%200.00262%5Capprox%200.003)
And this one is the best estimator for the population variance ![\sigma^2](https://tex.z-dn.net/?f=%5Csigma%5E2)