Answer:
179.0 g of iridium (1 mol / 192.217 g) ( 6.022 x 10^23 atoms / 1 mol ) = 5.61 x 10^23 atoms of iridium
Explanation:
Answer:
the compound contains C, H, and some other element of unknownidentity, so we can’t calculate the empirical formula
Explanation:
Mass of CO2 obtained = 3.14 g
Hence number of moles of CO2 = 3.14g/44.0 g = 0.0714 mol
The mass of the carbon in the sample = 0.0714 mol × 12.0g/mol = 0.857 g
Mass of H2O obtained = 1.29 g
Hence number of moles of H2O = 1.29g/18.0 g = 0.0717 mol
The mass of the carbon in the sample = 0.0717 mol × 1g/mol = 0.0717 g
% by mass of carbon = 0.857/1 ×100 = 85.7 %
% by mass of hydrogen = 0.0717/1 × 100 = 7.17%
Mass of carbon and hydrogen = 85.7 + 7.17 = 92.87 %
Hence, there must be an unidentified element that accounts for (100 - 92.87) = 7.13% of the compound.
A. The reactants are located to the left of the arrow in the chemical equation
Potassium chloride reacts with ammonium nitrate to give ammonium chloride and potassium nitrate.
This is a type of double displacement reaction. The balanced chemical equation can be represented as,

Total ionic equation for this reaction will be,

There is no apparent reaction as this reaction is not accompanied by the formation of a gas or a solid precipitate. We cannot observe any visual reaction as there is not net reaction taking place. All the ions remain as spectator ions.