Answer:
B = mass, height
Gravitational potential energy is a function of the mass ans the height of an object.
Explanation:
The formula for gravitational potential energy is
GPE = mgh
m = mass in kilogram
g = acceleration due to gravity
h = height in meter above the ground
Formula:
GP.E = mgh
Consider the following example:
A crane lifts a 75kg mass a height of 8 m. Calculate the gravitational potential energy gained by the mass:
Formula:
GP.E = mgh
Now we will put the values in formula.
g = 9.8 m/s²
GP.E = 75 Kg × 9.8 m/s²× 8 m
GP.E = 5880 Kg.m²/s²
Kg.m²/s² = j
GP.E = 5880 j
Answer:
What are large, relatively flat areas? ... Why are coastal plains also called lowlands? ... What is a grassy wetland usually flooded with water? ... What rises steeply from the land around them? ... flat raised landform made up of nearly horizontal rocks that have been uplifted ... distances in degrees north or south the equator.
Explanation:
You multiply avogadro's number to what you were given.
8.30x10^23 * 6. 0221409x10^23
=1.357*10^25
That should be the right answer but I'm not sure. It has been awhile since I have done this.
Thank you for posting your question here at brainly. Below is the solution:
<span>moles HClO4 = 0.100 L x 0.18 M = 0.018
moles LiOH = 0.030 L x 0.27 = 0.0081
moles H+ in excess = 0.018 - 0.0081 = 0.0099
total volume = 0.130 L
[H+] = 0.0099/ 0.130= 0.0762 M
pH = 1.12</span>
Answer: polar molecule.
Explanation:
The boiling point is the temperature at which the vapor pressure of a liquid equals the external pressure surrounding the liquid. The boiling point is dependent on the type of forces present.
Iodine monochloride (ICl) is a polar molecule due to the difference in electronegativities of iodine and chlorine. Thus the molecules are bonded by strong dipole dipole forces. Thus a higher temperature is needed to generate enough vapor pressure.
Bromine
is a non polar molecule as there is no electronegativity difference between two bromine atoms. The molecules are bonded by weak vanderwaal forces and thus has low boiling point.