Answer:
Sodium (Na): (.5 point)
22.99+35.453=58.433. 22.99/58.433= 39%
Chlorine (Cl): (.5 point)
22.99+35.453=58.433. 35.453/58.433= 61%
Explanation:
<span>KCl<span>O3</span><span>(s)</span>+Δ→KCl<span>(s)</span>+<span>32</span><span>O2</span><span>(g)</span></span>
Approx. <span>3L</span> of dioxygen gas will be evolved.
Explanation:
We assume that the reaction as written proceeds quantitatively.
Moles of <span>KCl<span>O3</span><span>(s)</span></span> = <span><span>10.0⋅g</span><span>122.55⋅g⋅mo<span>l<span>−1</span></span></span></span> = <span>0.0816⋅mol</span>
And thus <span><span>32</span>×0.0816⋅mol</span> dioxygen are produced, i.e. <span>0.122⋅mol</span>.
At STP, an Ideal Gas occupies a volume of <span>22.4⋅L⋅mo<span>l<span>−1</span></span></span>.
And thus, volume of gas produced = <span>22.4⋅L⋅mo<span>l<span>−1</span></span>×0.0816⋅mol≅3L</span>
Note that this reaction would not work well without catalysis, typically <span>Mn<span>O2</span></span>.
Answer:
The mole fraction of NaOH in an aqueous solution that contain 22.9% NaOH by mass=0.882
Explanation:
We are given that
Aqueous solution that contains 22.9% NaOH by mass means
22.9 g NaOH in 100 g solution.
Mass of NaOH(WB)=22.9 g
Mass of water =100-22.9=77.1
Na=23
O=16
H=1.01
Molar mass of NaOH(MB)=23+16+1.01=40.01
Number of moles =
Using the formula
Number of moles of NaOH

Molar mass of water=16+2(1.01)=18.02g
Number of moles of water

Now, mole fraction of NaOH
=

=0.882
Hence, the mole fraction of NaOH in an aqueous solution that contain 22.9% NaOH by mass=0.882
The part of the atom that is involved in chemical changes is A. electron. The electrons that are in the most outer shells are called valence electrons which are easily removed or shared to form bonds. Valence electrons are related to the number of valence electrons