<em>Answer: The disasters are different according to their occurrence. For example, the causes of an earthquake cannot be the same as that of forest-fire. Natural disasters are caused due to different reasons like soil erosion, seismic activity, tectonic movements, air pressure, and ocean currents etc.</em>
<em />
<em>Explanation: Have a great day,</em>
When atoms of an element combine they form a A-Compound
-Seth
Answer:
Solution Concentration: Molarity Moles of solute in one liter of solution Used because it describes how many molecules of solute are in each liter of solution Tro: Chemistry: A Molecular Approach, 2/e 6 amount of solute (in moles) Molarity, M = amount of solution (in L) moles of solute M = L of solution or simply 4
GOOD LUCK!!
Answer: The vapor pressure of water at 10°C will be less as compared with its vapor pressure at 50°C.
Explanation:
Vapor pressure of a liquid is defined as the pressure exerted by the vapors in equilibrium with the liquid/solution at a particular temperature.
As Kinetic energy is dependent on the absolute temperature of the gas.

where R = gas constant
T = temperature
On increase in temperature, the kinetic energy of the molecules increase and thus more liquid molecules can escape to form vapours and thus will exert more vapor pressure.
Thus the vapor pressure of water at 10°C will be less as compared with its vapor pressure at 50°C.
Redox
reactions are those in which the oxidation numbers of the elements involved are
changed.
Equation
1:
2Na(s)
+ Cl2(g) --> 2NaCl
The
oxidation numbers of Na and Cl in the reactant side are both zero because they
are in elemental form. In the product side, however, the oxidation numbers are
+1 and -1, respectively. Hence, this is an example of redox reaction.
Equation
2:
Cd(s)
+ Pb+2(aq) --> Cd2+(aq) + Pb(s)
The
oxidation numbers of Cd and Pb+2 in the reactant side are 0 and +2,
respectively. They are, however, +2 and 0 in the product side. Hence, this is
also a redox reaction.
Equation
3:
Pb(NO3)2(liq)
+ 2LiCl(aq) --> PbCl2(s) + 2LiNO3(aq)
The
oxidation numbers of the involved ions (both cations and anions) are not
changed. Hence, this is NOT an oxidation reaction.
Equation
4:
C(s)
+ O2(g) --> CO2(g)
Just
as the equation 1 and 2, the oxidation numbers of the reactants are not similar
to those in the product. Hence, this is an example of oxidation reaction.