Answer:
theoretically speaking I don't even wanna believe it's possible but if it does then then you should check for abortion
Answer:
At low pressure-
At high pressure-
Explanation:
Initial speed,
Final speed,
Net horizontal force due to rolling friction mg where m is mass, g is acceleration due to gravity, is coefficient of rolling friction
From kinematic relation,
For each tire,
Making the subject
Under low pressure of 40 Psi, d=18 m
Therefore,
At a pressure of 105 Psi, d=93.7
Therefore,
<u>Answer</u>:
The coefficient of static friction between the tires and the road is 1.987
<u>Explanation</u>:
<u>Given</u>:
Radius of the track, r = 516 m
Tangential Acceleration = 3.89 m/s^2
Speed,v = 32.8 m/s
<u>To Find:</u>
The coefficient of static friction between the tires and the road = ?
<u>Solution</u>:
The radial Acceleration is given by,
Now the total acceleration is
=>
=>
=>
=>
The frictional force on the car will be f = ma------------(1)
And the force due to gravity is W = mg--------------------(2)
Now the coefficient of static friction is
From (1) and (2)
Substituting the values, we get