<span>47 amu is the correct answer</span>
Answer:
A)
B)
C)
Explanation:
Given that a pendulum is suspended by a shaft with a very light thin rod.
Followed by the given information: m = 100 g, I = 0.5 m, g = 9.8 m / s²
We can determine the answer to these questions using angular kinematics.
Angular kinematics is just derived from linear kinematics but in different symbols, and expressions.
Here are the formulas for angular kinematics:
- θ = ωt
- ∆w =
- L [Angular momentum] = mvr [mass × velocity × radius]
A) What is the minimum speed required for the pendulum to traverse the complete circle?
We can use the formula v = √gL derived from
B) The same question if the pendulum is suspended with a wire?
C) What is the ratio of the two calculated speeds?
Answer:
Approximately
(assuming that external forces on the cannon are negligible.)
Explanation:
If an object of mass
is moving at a velocity of
, the momentum
of that object would be
.
Momentum of the t-shirt:
.
If there is no external force (gravity, friction, etc.) on this cannon, the total momentum of this system should be conserved. In other words, if
denote the momentum of this cannon:
.
.
Rewrite
to obtain
. Since the mass of this cannon is
, the velocity of this cannon would be:
.
Answer:
D. Half as great
Explanation:
Since we know that the friction force between the surface of crate and ground is given as

so here we know that
= friction coefficient between two surfaces which depends on the effective contact area between two surfaces
= normal force due to the object
So when we turn the object on another side such that the surface area is half then the friction coefficient will become also half
So here the friction force will also reduce to half
so correct answer will be
D. Half as great