Answer:
When a positive charged object is placed near a conductor electrons are attracted the the object. ... When electric voltage is applied, an electric field within the metal triggers the movement of the electrons, making them shift from one end to another end of the conductor. Electrons will move toward the positive side. As you know, electrons are always moving. They spin very quickly around the nucleus of an atom. As the electrons zip around, they can move in any direction, as long as they stay in their shell.
Scientific Method: Because, they use their method which the scientific one to solve investigations.
Answer:
The centripetal force on body 2 is 8 times of the centripetal force in body 1.
Explanation:
Body 1 has a mass m, and its moving in a circle with a radius r at a speed v. The centripetal force acting on it is given by :

Body 2 has a mass 2m and its moving in a circle of radius 4r at a speed 4v. The centripetal force on body 2 is :

So, the centripetal force on body 2 is 8 times of the centripetal force in body 1.
Answer:
18 N/C
Explanation:
Given that:
Electric field constant, k = 9*10^9 N/c
Distance, r = 10^-8 m
Dipole moment, p = 10^-33
Using the relation for electric field due to dipole :
E = [2KP / r³]
E = (2 * (9*10^9) * 10^-33) ÷ (10^-8)^3
E = (18 * 10^9 * 10^-33) ÷ 10^-24
E = [18 * 10^(9-33)] ÷ 10^-24
E = (18 * 10^-24) / 10^-24
E = 18 * 10^-24+24
E = 18 * 10^0
E = 18 N/C
Answer:
none of the above
Explanation:
im pretty positive this is the answer tell me if i am wrong please