Answer:
a. False
b. True
c. False
d. True
e. False
f. True
Step-by-step explanation:
<em><u>By properties of logarithms:</u></em>
a. False: ㏒ₐb-㏒ₐc ≠ (㏒ₐb / ㏒ₐc) does not exists that property 
b. True: (㏒ₐb)-(㏒ₐc) = ㏒ₐ(b/c)  <em>Logarithm of a Quotient</em>
c. False: Does not exists the property:  ㏒ₐ(c+b) =  ㏒ₐc + ㏒ₐb 
<em>so </em>
 ㏒₄(5x+16) ≠ ㏒₄5x + ㏒₄16 <em>but,</em><em>  </em>㏒₄16 + ㏒₄5x = 2 + ㏒₄5x  
<em>because</em> ㏒₄16 = 2.
d. True:  <em>Logarithm of a Product: </em>㏒ₐ(c×b) = ㏒ₐc + ㏒ₐb<em> </em>
<em>so</em>
<em> </em>㏒₄(16×5x) = ㏒₄16 + ㏒₄5x = 2 + ㏒₄5x
e. False: <em>Logarithm of a Power: </em> ㏒ₐ(c×b)ⁿ = n ㏒ₐ(c×b) = n (㏒ₐc + ㏒ₐb) = n ㏒ₐc + n ㏒ₐb <em> </em>
<em>so</em>
<em> </em>㏒ₐ(3x)² ≠ 2 ㏒ₐ3 + ㏒ₐx
f. Correct use of property in point e.