The measure of angle ∠EGF is 65°. And the measure of the angle ∠CGE is 115°.
<h3>What is the triangle?</h3>
A triangle is a three-sided polygon with three angles. The angles of the triangle add up to 180 degrees.
Triangle GEF is shown with its exterior angles.
Line GF extends through point B.
Line FE extends through point A.
Line EG extends through point C.
Angles ∠FEG and ∠EGF are congruent.
∠FEG = ∠EGF = x
Sides EF and GF are congruent.
Angle ∠EFG is 50° degrees.
∠EFG + ∠FGE + ∠GEF = 180°
50° + x + x = 180°
2x = 130°
x = 65°
∠FEG = ∠EGF = 65°
Then angle ∠CGF will be
∠CGF + ∠FGE = 180°
∠CGF + 65° = 180°
∠CGF = 115°
More about the triangle link is given below.
brainly.com/question/25813512
#SPJ1
So, if we take 68.73 to be the 100%, what is 12 in percentage off of it?

seems Audryn is being generous, she probably got the silverware and the maple leaves tablecloth.
g(x) = (1/4)x^2 . correct option C) .
<u>Step-by-step explanation:</u>
Here we have ,
and we need to find g(x) from the graph . Let's find out:
We have ,
. From the graph we can see that g(x) is passing through point (2,1 ) . Let's substitute this point in all of the four options !
A . g(x) = (1/4x)^2
Putting (2,1) in equation g(x) = (x/4)^2 , we get :
⇒ 
⇒ 
Hence , wrong equation !
B . g(x) = 4x^2
Putting (2,1) in equation g(x) = 4x^2 , we get :
⇒ 
⇒ 
Hence , wrong equation !
C . g(x) = (1/4)x^2
Putting (2,1) in equation g(x) = (1/4)x^2 , we get :
⇒ 
⇒ 
Hence , right equation !
D . g(x) = (1/2)x^2
Putting (2,1) in equation g(x) = (1/2)x^2 , we get :
⇒ 
⇒ 
Hence , wrong equation !
Therefore , g(x) = (1/4)x^2 . correct option C) .
<u>Given</u>:
If you are dealt 4 cards from a shuffled deck of 52 cards.
We need to determine the probability of getting two queens and two kings.
<u>Probability of getting two queens and two kings:</u>
The number of ways of getting two queens is 
The number of ways of getting two kings is 
Total number of cases is 
The probability of getting two queens and two kings is given by

Substituting the values, we get;

Simplifying, we get;



Thus, the probability of getting two queens and two kings is 0.000133