Answer:
see explanation
Step-by-step explanation:
(a)
Given
2k - 6k² + 4k³ ← factor out 2k from each term
= 2k(1 - 3k + 2k²)
To factor the quadratic
Consider the factors of the product of the constant term ( 1) and the coefficient of the k² term (+ 2) which sum to give the coefficient of the k- term (- 3)
The factors are - 1 and - 2
Use these factors to split the k- term
1 - k - 2k + 2k² ( factor the first/second and third/fourth terms )
1(1 - k) - 2k(1 - k) ← factor out (1 - k) from each term
= (1 - k)(1 - 2k)
1 - 3k + 2k² = (1 - k)(1 - 2k) and
2k - 6k² + 4k³ = 2k(1 - k)(1 - 2k)
(b)
Given
2ax - 4ay + 3bx - 6by ( factor the first/second and third/fourth terms )
= 2a(x - 2y) + 3b(x - 2y) ← factor out (x - 2y) from each term
= (x - 2y)(2a + 3b)
Answer:
The equation of the line that passes through the points (0, 3) and (5, -3) is
.
Step-by-step explanation:
From Analytical Geometry we must remember that a line can be formed after knowing two distinct points on Cartesian plane. The equation of the line is described below:
(Eq. 1)
Where:
- Independent variable, dimensionless.
- Dependent variable, dimensionless.
- Slope, dimensionless.
- y-Intercept, dimensionless.
If we know that
and
, the following system of linear equations is constructed:
(Eq. 2)
(Eq. 3)
The solution of the system is:
,
. Hence, we get that equation of the line that passes through the points (0, 3) and (5, -3) is
.
Ohyeah free points bruhoo
Answer:
Yes
Step-by-step explanation: