Answer:
im sorry im bored can we talk
Explanation:
lol
Actual question from source:-
A 3.96x10-4 M solution of compound A exhibited an absorbance of 0.624 at 238 nm in a 1.000 cm cuvette. A blank had an absorbance of 0.029. The absorbance of an unknown solution of compound A was 0.375. Find the concentration of A in the unknown.
Answer:
Molar absorptivity of compound A = 
Explanation:
According to the Lambert's Beer law:-
Where, A is the absorbance
l is the path length
is the molar absorptivity
c is the concentration.
Given that:-
c = 
Path length = 1.000 cm
Absorbance observed = 0.624
Absorbance blank = 0.029
A = 0.624 - 0.029 = 0.595
So, applying the values in the Lambert Beer's law as shown below:-

<u>Molar absorptivity of compound A =
</u>
The equation is as follows;
2CH3OH(g) = 2CH4(g) + O2(g), ΔH= +252.8 kJ
From the equation; for the reaction to produce 2 moles of methane (32g) an energy of 252.8 kJ is released.
Therefore; for an energy of 82.3 kJ the number of moles that will be produced will be; = (2×82.3)/252.3
= 0.6524 moles
which is equivalent to 0.6524 × 16 = 10.438 g
There, the mass of CH4 produced will be 10.438 g
Yes, it can happen.
If all the lower energy orbits are already filled with electrons, then it cannot happen since the lower orbitals will already be full, hence another electron will have to move.
However, if the lower energy orbits are not full (for instance if one excited electron goes back to its normal state), then it can happen.
Answer:
Tin(IV) Oxide + Carbon = Tin + Carbon Monoxide
Explanation: