Answer:
infinite points along the line
Step-by-step explanation:
This is the equation for a line. A line has infinite points. So there are infinite solutions along the line
Answer:
-26
Step-by-step explanation:
so, the absolute value of 3 and 11 together is 14.
14-(15+3+2)2
14-(20)2
14-40
-26
Answer:
68%
Step-by-step explanation:
Probability of occurrence of Event v = P(v) = 28% = 0.28
Probability of occurrence of both Events v and Event w together = P(v and w) = 19% = 0.19
We have to find what is the probability that event w occurs with event v given that event v occurs on a Tuesday. This is a conditional probability. In other words we have to find what is the probability of event w given that event v occurs of Tuesday. i.e we have to find P(w|v)
The formula to calculate this conditional probability is:
Using the given values, we get:
Therefore, the probability that even w will occur with event v given that event v occurs on Tuesday is 68%
the standard form of a quadratic formula is
y = ax^2 + bx + c
in this case you will solve using foil method
(× - 4)(x + 3)
<em>(</em><em>x</em><em> </em><em>×</em><em> </em><em>x</em><em>)</em><em> </em><em>+</em><em>(</em><em> </em><em>x</em><em> </em><em>×</em><em> </em><em>3</em><em> </em><em>)</em><em>(</em><em>-</em><em> </em><em>4</em><em> </em><em>×</em><em> </em><em>x</em><em>)</em><em> </em><em>(</em><em> </em><em>-4</em><em>)</em><em>×</em><em> </em><em>3</em><em>)</em><em>)</em>
<em>x</em><em>^</em><em>2</em><em> </em><em>+</em><em> </em><em>3x</em><em> </em><em>-</em><em> </em><em>4x</em><em> </em><em>-12</em>
<em>x</em><em>^</em><em>2</em><em> </em><em>-</em><em> </em><em>x</em><em> </em><em>-</em><em> </em><em>1</em><em>2</em>
<em>therefore</em><em> </em>
<em>y</em><em> </em><em>=</em><em> </em><em>x^</em><em>2-</em><em> </em><em>x</em><em> </em><em><u>-</u></em><em><u> </u></em><em><u>1</u></em><em><u>2</u></em><em><u> </u></em>
(2x + 3)⁵
(2x + 3)(2x + 3)(2x + 3)(2x + 3)(2x + 3)(2x + 3)
(2x(2x + 3) + 3(2x + 3))(2x(2x + 3) + 3(2x + 3)(2x + 3)
(2x(2x) + 2x(3) + 3(2x) + 3(3))(2x(2x) + 2x(3) + 3(2x) + 3(3))(2x + 3)
(4x² + 6x + 6x + 9)(4x² + 6x + 6x + 9)(2x + 3)
(4x² + 12x + 9)(4x² + 12x + 9)(2x + 3)
(4x²(4x² + 12x + 9) + 12x(4x² + 12x + 9) + 9(4x² + 12x + 9))(2x + 3)
(4x²(4x²) + 4x²(12x) + 4x²(9) + 12x(4x²) + 12x(12x) + 12x(9) + 9(4x²) + 9(12x) + 9(9))(2x + 3)
(16x⁴ + 48x³ + 36x² + 48x³ + 144x² + 108x + 36x² + 108x + 81)(2x + 3)
(16x⁴ + 48x³ + 48x³ + 36x² + 144x² + 36x² + 108x + 108x + 81)(2x + 3)
(16x⁴ + 96x³ + 216x² + 216x + 81)(2x + 3)
16x⁴(2x + 3) + 96x³(2x + 3) + 216x²(2x + 3) + 216x(2x + 3) + 81(2x + 3)
16x⁴(2x) + 16x⁴(3) + 96x³(2x) + 96x³(3) + 216x²(2x) + 216x²(3) + 216x(2x) + 216x(3) + 81(2x) + 81(3)
32x⁵ + 48x⁴ + 184x⁴ + 288x³ + 432x³ + 648x² + 432x² + 648x + 162x + 243
32x⁵ + 232x⁴ + 720x³ + 1080x² + 810x + 243