Answer:
A) chlorine
Explanation:
To solve this question we can use:
PV = nRT
In order to solve the moles of the gas. With the moles and the mass we can find the molar mass of the gas to have an idea of its identy:
PV = nRT
PV / RT = n
<em>Where P is pressure: 603mmHg * (1atm / 760mmHg) = 0.7934atm</em>
<em>V = 100mL = 0.100L</em>
<em>R is gas constant = 0.082atmL/molK</em>
<em>T is absolute temperature = 14°C + 273.15 = 287.15K</em>
0.7934atm*0.100L / 0.082atmL/molK*287.15K = n
3.37x10⁻³ moles of the gas
In 0.239g. The molar mass is:
0.239g / 3.37x10⁻³ moles = 70.9g/mol
The gas with this molar mass is Chlorine, Cl₂:
<h3>A) chlorine
</h3><h3 />
To answer your question, the answer is number 1. hope this help
I searched for complete question (as your question is missing with structure) and found the structure of compound attached below.
Answer: The compound can
neither act as a Hydrogen Bond Donor
nor act as a Hydrogen Bond Acceptor.
Explanation: For two compounds to build Hydrogen Bond Interactions it is compulsory that they must contain Hydrogen atoms which are directly attached to most electronegative atoms like
Fluorine,
Oxygen and
Nitrogen.
As the given compound is
2-Butene (a non polar hydrocarbon), it lacks partial positive Hydrogen (which can act as Hydrogen Bond Donor) and a most electronegative element (F, O or N) which can act as Hydrogen Bond Acceptor. Therefore, this compound will not generate any Hydrogen Bonding with water molecules and will remain immiscible in it.