<em>Five household items that </em><em>contain</em><em> the same chemicals as cigarettes :</em><em>-</em>
- <em>Perfume</em>
- <em>Household</em><em> </em><em>cleaning</em><em> </em><em>products</em>
- <em>Beauty</em><em> </em><em>Products</em>
- <em>Sunscreen</em>
- <em>Water</em><em> </em><em>bottles</em>
<em>They</em><em> </em><em>contain</em><em> </em><em>toxic</em><em> </em><em>substances</em><em>!</em>
<em>hope</em><em> </em><em>it</em><em> </em><em>helps</em><em>!</em>
Answer:
The correct option is the second option
Explanation:
Generally, the aim of science is to understand a particular concept in the best and the most correct way possible; hence experiments are done and repeated to ensure an explanation is actually true about a concept or need modification.
The atomic models have also been a "beneficiary" of this process. The different atomic models are usually been improved upon as scientists leaned more. For example, the Dalton's atomic theory has been modified to a more correct atomic description; some of which are shown below
(1) Dalton's theory suggested that an atom is the smallest unit of a molecule. We know now from different experiments (by J. J Thompson and Rutherford) that atoms are not the smallest molecules and are made up of smaller particles known as protons, neutrons and electrons.
(2) Dalton's theory suggested that atoms of the same elements are alike in all aspects. The knowledge of isotopy shows this is not always the case. As atoms of the same elements (isotopes) have the same atomic number but different mass number; hence cannot be said to be the same in all aspects.
(3) Dalton's theory also suggested that when atoms react, they do so in fixed, simple whole number ratio. The knowledge of organic chemistry shows atoms do not always react in simple whole number ratios
There are several modifications to different postulations by scientists that have also occurred aside from this, hence the most correct answer is that "As scientists learned more, they modified the atomic model"
Hey there!
It is evident that the problem gives the mass of the bottle with the calcite, with water and empty, which will allow us to calculate the masses of both calcite and water. Moreover, with the given density of water, it will be possible to calculate its volume, which turns out equal to that of the calcite.
In this case, it turns out possible to solve this problem by firstly calculating the mass of calcite present into the bottle, by using its mass when empty and the mass when having the calcite:

Now, we calculate the volume of the calcite, which is the same to that had by water when weights 13.5441 g by using its density:

Thus, the density of the calcite sample will be:

This result makes sense, as it sinks in chloroform but floats on bromoform as described on the last part of the problem, because this density is between 1.444 and 2.89. g/mL
Learn more:
Regards!
Answer : The formula of the missing product is, 
Explanation :
The given incomplete equation representing a reaction,

When the sodium metal react with the water then it gives a colorless solution of sodium hydroxide and hydrogen gas. In the solution, sodium hydroxide is present in the form of ions i.e,
and
ions.
The balanced chemical reaction will be,

Therefore, the formula of the missing product is, 