1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MakcuM [25]
3 years ago
12

The line that passes through the points (3,0) and (-5,8) is

Mathematics
1 answer:
aleksandr82 [10.1K]3 years ago
4 0
The answer is A.
If you were to graph the points, the slope connecting the two would be negative. Meaning the line is decreasing.
You might be interested in
Solve the volume for the triangular prism
NeTakaya

Answer:

9.5 cubic units

Step-by-step explanation:

You need to multiply everything together and divide by 2.

5 x 2 x 1.9/2 = v

19/2 = v

9.5 cubic units

8 0
3 years ago
An online shopping club has 10,000 members when it charges $7 per month for membership. For each $1 monthly
Sonja [21]

Answer:

The function that can be used in the online shopping club about its monthly revenue is:

R = -400x^{2} +7200x+70000

Step-by-step explanation:

First, we're gonna take into account the different values we have in the exercise:

  1. 10,000 members
  2. $7 per month for membership
  3. Loses of 400 members by each $1 monthly increase

How the variable x represents the price increase, we can do the formula below:

  • (10000 - 400x) * (7+x)

In this formula, we represent in the first part that by each 1 in the variable x, the total of members will be reduced in 400, in the second part, we mention that at the same time, the membership fee will be increased in the same value of x. Now we must simplify this function:

  • (10000 - 400x) * (7+x)

We operate the values:

  • 70000+10000x-2800x-400x^{2}

Solve we can:

  • 70000+7200x-400x^{2}

And organize:

  • -400x^{2} +7200x+70000

At the end, how R represents the monthly revenue received by the club, we use that variable for our formula:

  • R=-400x^{2} +7200x+70000

4 0
2 years ago
Choose the slope-intercept form of y + 3 = 4(x - 5).
Scrat [10]

Answer: y=4x-23

Step-by-step explanation:

First multiply the 4 on the right side to make it y+3=4x-20. Then subtract 3 on both sides to get y=4x-23

5 0
3 years ago
Read 2 more answers
Suppose the local Barons team wins every game they play with a probability of 0.75. What is the probability that the Barons woul
kondaur [170]

Answer:

The probability is 0.173

Step-by-step explanation:

The probability is of winning is 0.75 = 75/100 = 3/4

This means that the probability of losing is 0.25 = 25/100 = 1/4

So if they are two win 4 games, they will lose three

We can get this probability using the Bernoulli approximation of the binomial theorem

So here, we have

P(X = 4) = 7 C 4 * 0.75^4 * 0.25^3

= 0.173034667969

which is approximately 0.1730

6 0
2 years ago
The graph of f(x)= 3/1+x^2 is shown in the figure to the right. Use the second derivative of f to find the intervals on which f
GenaCL600 [577]

Answer:

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

General Formulas and Concepts:

<u>Calculus</u>

Derivative of a Constant is 0.

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Second Derivative Test:

  • Possible Points of Inflection (P.P.I) - Tells us the possible x-values where the graph f(x) may change concavity. Occurs when f"(x) = 0 or undefined
  • Points of Inflection (P.I) - Actual x-values when the graph f(x) changes concavity
  • Number Line Test - Helps us determine whether a P.P.I is a P.I

Step-by-step explanation:

<u>Step 1: Define</u>

f(x)=\frac{3}{1+x^2}

<u>Step 2: Find 2nd Derivative</u>

  1. 1st Derivative [Quotient/Chain/Basic]:                           f'(x)=\frac{0(1+x^2)-2x \cdot 3}{(1+x^2)^2}
  2. Simplify 1st Derivative:                                                           f'(x)=\frac{-6x}{(1+x^2)^2}
  3. 2nd Derivative [Quotient/Chain/Basic]:     f"(x)=\frac{-6(1+x^2)^2-2(1+x^2) \cdot 2x \cdot -6x}{((1+x^2)^2)^2}
  4. Simplify 2nd Derivative:                                                       f"(x)=\frac{6(3x^2-1)}{(1+x^2)^3}

<u>Step 3: Find P.P.I</u>

  • Set f"(x) equal to zero:                    0=\frac{6(3x^2-1)}{(1+x^2)^3}

<em>Case 1: f" is 0</em>

  1. Solve Numerator:                           0=6(3x^2-1)
  2. Divide 6:                                          0=3x^2-1
  3. Add 1:                                              1=3x^2
  4. Divide 3:                                         \frac{1}{3} =x^2
  5. Square root:                                   \pm \sqrt{\frac{1}{3}} =x
  6. Simplify:                                          \pm \frac{\sqrt{3}}{3}  =x
  7. Rewrite:                                          x= \pm \frac{\sqrt{3}}{3}

<em>Case 2: f" is undefined</em>

  1. Solve Denominator:                    0=(1+x^2)^3
  2. Cube root:                                   0=1+x^2
  3. Subtract 1:                                    -1=x^2

We don't go into imaginary numbers when dealing with the 2nd Derivative Test, so our P.P.I is x= \pm \frac{\sqrt{3}}{3} (x ≈ ±0.57735).

<u>Step 4: Number Line Test</u>

<em>See Attachment.</em>

We plug in the test points into the 2nd Derivative and see if the P.P.I is a P.I.

x = -1

  1. Substitute:                    f"(x)=\frac{6(3(-1)^2-1)}{(1+(-1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                        f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up before x=\frac{-\sqrt{3}}{3}.

x = 0

  1. Substitute:                    f"(x)=\frac{6(3(0)^2-1)}{(1+(0)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(0)-1)}{(1+0)^3}
  3. Multiply:                       f"(x)=\frac{6(0-1)}{(1+0)^3}
  4. Subtract/Add:              f"(x)=\frac{6(-1)}{(1)^3}
  5. Exponents:                  f"(x)=\frac{6(-1)}{1}
  6. Multiply:                       f"(x)=\frac{-6}{1}
  7. Divide:                         f"(x)=-6

This means that the graph f(x) is concave down between  and .

x = 1

  1. Substitute:                    f"(x)=\frac{6(3(1)^2-1)}{(1+(1)^2)^3}
  2. Exponents:                   f"(x)=\frac{6(3(1)-1)}{(1+1)^3}
  3. Multiply:                       f"(x)=\frac{6(3-1)}{(1+1)^3}
  4. Subtract/Add:              f"(x)=\frac{6(2)}{(2)^3}
  5. Exponents:                  f"(x)=\frac{6(2)}{8}
  6. Multiply:                       f"(x)=\frac{12}{8}
  7. Simplify:                       f"(x)=\frac{3}{2}

This means that the graph f(x) is concave up after x=\frac{\sqrt{3}}{3}.

<u>Step 5: Identify</u>

Since f"(x) changes concavity from positive to negative at x=\frac{-\sqrt{3}}{3} and changes from negative to positive at x=\frac{\sqrt{3}}{3}, then we know that the P.P.I's x= \pm \frac{\sqrt{3}}{3} are actually P.I's.

Let's find what actual <em>point </em>on f(x) when the concavity changes.

x=\frac{-\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+(\frac{-\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{-\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{-\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{-\sqrt{3}}{3} )=\frac{9}{4}

x=\frac{\sqrt{3}}{3}

  1. Substitute in P.I into f(x):                    f(\frac{\sqrt{3}}{3} )=\frac{3}{1+(\frac{\sqrt{3} }{3} )^2}
  2. Evaluate Exponents:                          f(\frac{\sqrt{3}}{3} )=\frac{3}{1+\frac{1}{3} }
  3. Add:                                                    f(\frac{\sqrt{3}}{3} )=\frac{3}{\frac{4}{3} }
  4. Divide:                                                f(\frac{\sqrt{3}}{3} )=\frac{9}{4}

<u>Step 6: Define Intervals</u>

We know that <em>before </em>f(x) reaches x=\frac{-\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

We know that <em>after </em>f(x) passes x=\frac{\sqrt{3}}{3}, the graph is concave up. We used the 2nd Derivative Test to confirm this.

Concave Up Interval: (- \infty,\frac{-\sqrt{3} }{3} )U(\frac{\sqrt{3} }{3} , \infty)

We know that <em>after</em> f(x) <em>passes</em> x=\frac{-\sqrt{3}}{3} , the graph is concave up <em>until</em> x=\frac{\sqrt{3}}{3}. We used the 2nd Derivative Test to confirm this.

Concave Down Interval: (\frac{-\sqrt{3} }{3}, \frac{\sqrt{3} }{3} )

6 0
3 years ago
Other questions:
  • Evaluate the expression \{10 x 7\}+(10 - 6){10×7}+(10−6)left brace, 10, times, 7, right brace, plus, left parenthesis, 10, minus
    9·2 answers
  • What is the percent of increase for a population that changed from 438,000 to 561,000?
    12·1 answer
  • HELP FAST PLEASE!!!<br> Show that sin(x+pi)=-sinx
    11·2 answers
  • Sandra bought a tube of toothpaste for $1.89, shampoo for $3.19 and a jar of peanuts for $2.29 from the local supermarket. Using
    7·2 answers
  • TURILO
    8·1 answer
  • What is 2 8/15+ 1 1/30
    13·2 answers
  • The quotient of a number and negative eight is five-eighths. Find the number.
    14·2 answers
  • A vase is in the shape of a rectangular prism. It has a base area of 40
    11·1 answer
  • What is 5 over 8 expressed as a percent?
    9·1 answer
  • Find the solution for the following system of equations.<br><br> y = -2x + 6 <br> y = 3x - 4
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!