Answer:
96.99 C degree change
Explanation:
480 cal / ( 150 g * .033 cal/g-C ) = 96.99 C
When 3.66 g of KOH (∆Hsol = -57.6 kJ/mol) is dissolved in 150.0 mL of solution, it causes a temperature change of 5.87 °C.
The enthalpy of solution of KOH is -57.6 kJ/mol. We can calculate the heat released by the solution (Qr) of 3.66 g of KOH considering that the molar mass of KOH is 56.11 g/mol.

According to the law of conservation of energy, the sum of the heat released by the solution of KOH (Qr) and the heat absorbed by the solution (Qa) is zero.

150.0 mL of solution with a density of 1.02 g/mL were prepared. The mass (m) of the solution is:

Given the specific heat capacity of the solution (c) is 4.184 J/g・°C, we can calculate the change in the temperature (ΔT) of the solution using the following expression.

When 3.66 g of KOH (∆Hsol = -57.6 kJ/mol) is dissolved in 150.0 mL of solution, it causes a temperature change of 5.87 °C.
Learn more: brainly.com/question/4400908
I have not taken Chemistry in a year but I remember that if you look at a periodic table there are certain sections for polar and non polar elements. I dont know if you have learned that yet
Answer:
The answer is the respiratory system
Explanation:
The function of the respiratory system is to move two gases. These two gases are called oxygen and carbon dioxide. Gas exchange takes place in the millions of alveoli in the lungs and the capillaries that envelop them.
Answer:
120g
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
Sn + 2HF —> SnF2 + H2
Next, we shall determine the number of mole of HF needed to react with 3 moles of Sn.
From the balanced equation above, 1 mole of Sn reacted with 2 moles of HF.
Therefore, 3 moles of Sn will react with = 3 x 2 = 6 moles of HF.
Finally, we shall convert 6moles of HF to grams
This is illustrated below:
Number of mole of HF = 6moles
Molar Mass of HF = 1 + 19 = 20g/mol
Mass of HF =..?
Mass = number of mole x molar Mass
Mass of HF = 6 x 20
Mass of HF = 120g
Therefore, 120g of HF is needed to react with 3 moles of Sn