If a gas has an initial pressure of 24,650 pa and an initial volume of 376 ml, then the final volume would be 11,943.8144 ml if the pressure of the gas is changed to 775 torr assuming that the amount and the temperature of the gas remain constant.
It is given that the initial pressure P₁ is 24,650Pa and initial volumeV₁ is 376ml and the final pressureP₂ is 775 torr. We need to find the final volume of the gas. The final volume could be found using the following formula:
P₁V₁ = P₂V₂
By substituting the values, we get
24650 x 376 = 776 x V₂
9268400 = 776V₂
V₂ = 9268400/776
V₂ = 11,943.8144 ml
Therefore, the final volume of the gas would be 11,943.8144 ml
To know more about Partial pressure, click below:
brainly.com/question/14119417
#SPJ4
The grams of oxygen that are produced is 228.8 grams
<em>calculation</em>
2H₂O₂ → 2H₂O +O₂
Step 1: use the mole ratio to determine the moles of O₂
from equation above H₂O₂:O₂ is 2:1
therefore the moles of O₂ = 14.3 moles ×1/2 = 7.15 moles
Step 2: find mass of O₂
mass = moles × molar mass
= 7.15 moles × 32 g/mol =228.8 g
Answer: acetone molecule ( CH₃-CO-CH₃)
Explanation:
1) Acetone is CH₃-CO-CH₃
2) That is a molecule (build up of covalent bonds).
3) When dissolved, covalent bonded compounds remain as separate molecules, then it is said that the major species present in the solution is the molecule. The molecules of acetone are surrounded (sovated) by the molecules of water.
This as opposed to the case of ionic compounds that ionize. When a compound as NaCl dissolves in water, it ionizes completely, so the major speceies are not NaCl formulas, but the ions Na⁺ and Cl⁻, not molecules.
That leads to the answer: the major species present when acetone is dissolved in water is the molecules of acetone (you do not need to state the fact that the molecules of water are part of the solution, because that is not the target of the question).
Remembering that
d = m ÷ v
d = ?
m = 89 g
v = 10 cm³
Therefore:
d = 89 ÷ 10
d = 8,9 g÷cm³