Answer:
Earth: 22.246 N
Moon: 3.71 N
Jupiter: 58.72 N
Explanation:
The mass of an object will remain constant in any location, its weight however, can fluctuate depending on its location. For example, a golf ball will weigh less on the moon, but its mass will not be different if it was on earth.
To calculate anything, we need to convert to standard measurements.
5.00 lbs = 2.27 kg
On earth, gravity is measured to be 9.8 m/s², so the weight in Newtons on Earth would be: (2.27 kg) x (9.8 m/s²) = 22.246 N
Repeated on the moon where gravity is (9.8 m/s²) x (1/6) = 1.633 m/s², so the weight in Newtons on the moon would be: (2.27 kg) x (1.633 m/s²) = 3.71 N
Repeated on Jupiter where gravity is (9.8 m/s²) x (2.64) = 25.87 m/s², so the wight in Newtons on Jupiter would be: (2.27 kg) x (25.87 m/s²) = 58.72 N
Yes, the above-given statement is true
<u>Explanation:</u>
- The product of the mass x the velocity will be the same for both. Momentum is the action of a body with a particular mass through space and there is the conservation of momentum.
- Momentum is described as the mass of the object multiplied by its velocity.
- <u>Momentum (p) = Mass (M) * Velocity (v)</u>
- Therefore for two objects with many masses to have a similar momentum, then the lighter one has to be moving quicker than the heavier object.
Answer:
A related type of beta decay
Explanation:
The <span>force that is needed to accelerate an object 5 m/s if the object has a mass of 10kg 50N because you multiply 5 and 10</span>