Answer:
Wm = 97.2 [N]
Explanation:
We must make it clear that mass and weight are two different terms, the mass is always preserved that is to say this will never vary regardless of the location of the object. While weight is defined as the product of mass by gravitational acceleration.
W = m*g
where:
m = mass = 60 [kg]
g = gravity acceleration = 10 [m/s²]
But in order to calculate the weight of the body on the moon, we must know the gravitational acceleration of the moon. Performing a search of this value on the internet, we find that the moon's gravity is.
gm = 1.62 [m/s²]
Wm = 60*1.62
Wm = 97.2 [N]
Answer:
The value of d is 20.4 m.
(C) is correct option.
Explanation:
Given that,
Initial velocity = 20 m/s
Final velocity = 0
We need to calculate the time
Using equation of motion

Where, u = Initial velocity
v = Final velocity
Put the value into the formula


We need to calculate the distance
Using equation of motion



Hence, The value of d is 20.4 m.
Answer:
2.55 × 10³ J =2.55 kJ
Explanation:
Specific heat capacity of ice = 37.8 J / mol °C
Specific heat capacity of water = 76.0 J/ mol °C
Ice at -12 °C is converted to ice at 0 °C by absorbing heat Q₁
Ice at 0°C melts to water at 0 °C. Let Heat absorbed during this phase change be Q₂ .
Let heat absorbed to raise the temperature of water from 0 C to 24°C be Q₃ .
Total heat = Q = Q₁ + Q₂ + Q₃
Q₁ = (37.8 j/mol C )(5.53 g /18.01532 g/ mol )( 0-(-12)) = 139.23749 j
Q₂ =(5.53 g/18.01532 g H₂O / mol ) (6.02 x10³ j) = 1847.905 j
Q₃ = (76 j/mol C) ( (5.53 g/18.01532 g H₂O / mol )(24-0) = 559.8968 j
Total Heat required = Q = 139.23749 j + 1847.905 j + 559.8968 j
= 2547.039 j = 2.55 × 10³ J =2.55 kJ