acceleration = Velocity changes ÷ time of the velocity changes
4 m/s^2 =
4 × 10^(-3) × 3600 km / h =
4 × 3.6 =
14.4 km / h
Thus :
14.4 = V(2) - V(1) / t(2) - t(1)
14.4 = V(2) - 20 / 10
Multiply both sides by 10
10 × 14.4 = 10 × ( V(2) - 20 ) / 10
144 = V(2) - 20
Add both sides 20
144 + 20 = V(2) - 20 + 20
V(2) = 164 Km/h
Thus the final velocity after 10 seconds is 164 Km/h .
Answer: 0.9264 kg
Explanation: [I'll use "cc" for cubic centimeter, instead of cm^3.
The volume is 6cm*4cm*2cm = 48 cm^3 (cc).
Density of Au is 19.3 g/cc
Mass of gold = (48 cc)*(9.3 g/cc) = 926.4 grams Au
1 kg = 1,000 g
(926.4 grams Au)*(1 kg/1,000 g) = 0.9264 kg, 0.93 kg to 2 sig figs
At gold's current price of $57,500/kg, this bar is worth $53,268. Keep it hidden from your lab partner (and instructor).
Answer: 13.2 seconds.
Explanation: using equation of motion; S= ut +1/2at² where u = initial velocity=0
S= distance travelled
a = acceleration due gravity
t= time.
1 foot = 0.305m so,
S= 2860 feet =872.3m
S= ut+1/2 at²
872.3 = 0×t + 1/2×10 × t²
872.3 =0 + 5t²
T²= 872.3/5
T²= 174.46
Take the square root of T we then have;
t = 13.2 seconds to one decimal place.
Answer:
The total number of oscillations made by the wave during the time of travel is 1.4 Oscillations. Strictly speaking, the number of complete oscillations is 1.
Explanation:
The required quantity is the number of complete oscillations made by the traveling wave. The amplitude time and frequency are not needed to calculate the number of oscillations as it is the ratio of the distance traveled to the wavelength( minimum distance that must be traveled to complete one oscillation) of the wave. So the total number of oscillations is 1.4 while the number of complete oscillations is 1 (strictly speaking). The detailed solution to this question can be found in the attachment below. Thank you!
The state of matter that the particles move independently of one another with very little attraction is, I believe, gas