1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
8090 [49]
3 years ago
9

You're driving a vehicle of mass 1350 kg and you need to make a turn on a flat road. The radius of curvature of the turn is 71 m

. The maximum horizontal component of the force that the road can exert on the tires is only 0.23 times the vertical component of the force of the road on the tires (in this case the vertical component of the force of the road on the tires is mg, the weight of the car, where as usual g = +9.8 N/kg, the magnitude of the gravitational field near the surface of the Earth). The factor 0.23 is called the "coefficient of friction" (usually written "", Greek "mu") and is large for surfaces with high friction, small for surfaces with low friction.
(a) What is the fastest speed you can drive and still make it around the turn? Invent symbols for the various quantities and solve algebraically before plugging in numbers.
maximum speed =_______________ m/s
Physics
1 answer:
sergey [27]3 years ago
5 0

Answer:

v=12.65\ m.s^{-1}

Explanation:

Given:

  • mass of vehicle, m=1350\ kg
  • radius of curvature, r=71\ m
  • coefficient of friction, \mu=0.23

<u>During the turn to prevent the skidding of the vehicle its centripetal force must be equal to the opposite balancing frictional force:</u>

m.\frac{v^2}{r} =\mu.N

where:

\mu= coefficient of friction

N= normal reaction force due to weight of the car

v= velocity of the car

1350\times \frac{v^2}{71} =0.23\times (1350\times 9.8)

v=12.65\ m.s^{-1} is the maximum velocity at which the vehicle can turn without skidding.

You might be interested in
What was an ill effect of the industrial revolution?
Digiron [165]

Answer:

answer is option (c) child labour

6 0
3 years ago
A car traveling at 27.4 m/s hits a bridge abutment. A passenger in the car, who has a mass of 65.0 kg, moves forward a distance
Minchanka [31]

Answer:

F=43570.9N

Explanation:

We can calculate the acceleration experimented by the passenger using the formula v_f^2=v_i^2+2ad, taking the initial direction of movement as the positive direction and considering it comes to a rest:

a=\frac{v_f^2-v_i^2}{2d}=\frac{-v_i^2}{2d}

Then we use Newton's 2nd Law to calculate the force the passenger of mass m experimented to have this acceleration:

F=ma=\frac{-mv_i^2}{2d}

Which for our values is:

F=\frac{-(65kg)(27.4m/s)^2}{2(0.56m)}=43570.9N

6 0
4 years ago
When an x-ray photon passes through matter it undergoes a process called:_________.
bekas [8.4K]

Answer:

when an x-ray passes trough matter, it undergoes a process called attenuation

5 0
3 years ago
Can someone answer these
LenKa [72]

Four

Sometimes I think the creators of problems out to drawn and quartered. 60 g does not mean 60 grams. It means 60 * the acceleration due to gravity.

So the question really reads. The acceleration delivered by the air bag is 60 times that of a normal gravitational. This acceleration is delivered to the person where his mass is putting up a whole lot of resistance because he and his 75 kg are moving forward with the impact of the car. The 36 msec. has nothing to do with the problem.

The Force of the Air Bag is mass * a

F_airbag = mass * acceleration = 75 kg * 60 * 9.81 mass * acceleration = 44145 newtons

The answer is 4.41 * 10^4

Answer C

Five

This problem is governed by one formula that you sort of have to get out of your hat -- a piece of magic if you will.

Fg - Bf = m * a

Fg = the Force of gravity

Bf = the braking force

The mass of the rocket is derived from its weight

The acceleration is derived from one of your big 4 equations.

m of the rocket = 75600 / 9.81 = 7706 kg

The acceleration =

vi = 1 km/s = 1000 m/s

vf = 0

t = 2 minute * 60 sec/ min = 120 seconds

a = (vf - vi)/t = (0 - 1000 m/s) / 120 sec

a = - 8.333 m/s^2 The minus sign makes perfect sense. Remember the rocket is slowing down

The net downward force = mass * acceleration = - 7706 kg * - 8.333 m/s^2

The net force = - 64217 N

So going back to the problem's equation we have

Gravitational force - Braking Force = Net Force

Gravitational Force = 75600

Net Force = - 64217

Bracking force = ?

75600 - Bracking force = - 64217  Subtract 75600 from both sides

- Bracking force = - 64217 - 75600

- Braking force = - 139817

Braking force = 139817 N = 1.398 * 10^5 N

Braking Force = 1.4 * 10^5

Answer: Last One.

Six

The first thing you should do is derive a general formula for this problem.

The force pulling both masses down is M*g where g is the acceleration due to gravity.

The formula for this problem is

Mg = (m + M) * a

Now you need to solve for a

a =  [M/(M + m) ] * g

Look what is happening. is a smaller or larger than g? This is a question you should really pay attention to. If it was larger, everyone would have this system in their basement because you'd get more energy output than you put in. Something for nothing is always appealing.

So what's the answer? (I get to ask it. No one posing the question ever should).

A

A is incorrect. M never goes away. The acceleration may get very tiny, but there always is some acceleration.

B must be true. It is just what I finished saying about A

C Who said anything about velocity? It's a red herring. If the velocity became 0 the acceleration would have to turn minus. This answer sounds good, but sounds good doesn't make it right. C is wrong.

D The acceleration does not remain constant no matter what. The answer to A still applies. So D is wrong.

4 0
3 years ago
A tissue designed to carry messages throughout the body is most likely to be
ladessa [460]
...a nerve. These send signals from the body to the brain and vice versa.
5 0
4 years ago
Other questions:
  • Explain why a balloon expands when taken to a higher elevation if the temperature remains constant?
    10·2 answers
  • Two satellites have circular orbits with the same radius. One satellite is twice mass of the other. Which has a higher speed?
    5·1 answer
  • An 1700 kg car is moving to the right at a constant speed of 1.50 m/s. (a) what is the net force on the car
    7·1 answer
  • A mass of 10 kg is at a point A on the table. It moved to a point B. If the line joining A and B is horizontal. What is the work
    12·1 answer
  • Which type of electromagnetic waves has highest frequency​
    5·2 answers
  • 4) A force of 500 N acts on an area of 0.05m2. Find the pressure in Pascal.
    13·1 answer
  • The amount of steering wheel movement needed to turn will ____________ the faster you go.
    5·2 answers
  • 174cm=____ m<br>1.74<br>17.4<br>1740<br>17,400​
    8·1 answer
  • A man has 60w bulbs and a 240w water heater in his apartment. If the bulbs and the water heater are switched on for four hours d
    13·1 answer
  • Can someone help me ?????
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!