The response is False, both bars, iron bars and plastic
bars have de same inertia, this characteristic does not depend on the type of
material, the inertia depends on his transverse section, since we can estimate
in the following formula
<span>Area moment of inertia Ixx = BH3/12</span>
<span>Area moment of inertia Iyy= HB3/12</span>
Answer:
The reactance of the capacitor
Explanation:
In an AC circuit containing different elements (capacitors, resistors and inductors), we cannot simply calculate the equivalent resistance of the circuit, so another quantity is used, which is called reactance.
For a capacitor, the reactance is given by:

where:
f is the frequency of the AC current in the circuit
C is the capacitance of the capacitor
The reactance has a similar meaning to that of the resistance for a DC current. In fact, we notice that:
- When f=0 (which means we are in regime of DC current, because the current never changes direction), the reactance is infinite. This is correct: in a DC circuit, the capacitor does not let current pass through it, so it like it has infinite resistance (=infinite reactance)
- When f tends to infinite, the reactance becomes zero: in such situation, the current in the circuit changes direction so quickly that the capacitor has no enough time to "block" the current in the circuit, so it like it has almost zero resistance (zero reactance).
the greater the <u>mass</u> of an object the more force is needed to cause acceleration
Answer:
<h2>45 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 15 × 3
We have the final answer as
<h3>45 N</h3>
Hope this helps you