Answer:
pH = 6.82
Explanation:
To solve this problem we can use the<em> Henderson-Hasselbach equation</em>:
- pH = pKa + log
![\frac{[NaOCl]}{[HOCl]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BNaOCl%5D%7D%7B%5BHOCl%5D%7D)
We're given all the required data to <u>calculate the original pH of the buffer before 0.341 mol of HCl are added</u>:
- pKa = -log(Ka) = -log(2.9x10⁻⁸) = 7.54
- [HOCl] = [NaOCl] = 0.500 mol / 0.125 L = 4 M
- pH = 7.54 + log

By adding HCl, w<em>e simultaneously </em><u><em>increase the number of HOCl</em></u><em> and </em><u><em>decrease NaOCl</em></u>:
- pH = 7.54 + log
![\frac{[NaOCl-HCl]}{[HOCl+HCl]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BNaOCl-HCl%5D%7D%7B%5BHOCl%2BHCl%5D%7D)
- pH = 7.54 + log

We produce formaldehyde for medicinal purposes and synthesizing polyester.
Formaldehyde is a compound that is required in about 1.5 ounces in quantity as a normal part of our metabolism.
Also formaldehyde is used as a catalyst in the formation for the synthesis of many polyesters.
Formaldehyde also has many uses such as fungicide, germicide, disinfectant and as a preservative in mortuaries as well as important chemical in medical Laboratories.
In everyday items press fabric paints coating and paper base products also includes formaldehyde.
To know more about formaldehyde, visit,
brainly.com/question/29550668
#SPJ4
Answer:
building really complicated legos
Explanation:
Answer:
a boy pulling a toy train, the boy is
interacting with an object while applying a force to it,
another example of contact forces is friction.
Explanation:
A contact force is when two interacting
objects
(btw love your pfp)
<h3>
Answer:</h3>
70.906 g
<h3>
Explanation:</h3>
We are given;
- Atoms of Chlorine = 1.2 × 10^24 atoms
We are required to calculate the mass of Chlorine
- We know that 1 mole of an element contains atoms equivalent to the Avogadro's number, 6.022 × 10^23.
- That is , 1 mole of an element = 6.022 × 10^23 atoms
- Therefore; 1 mole of Chlorine = 6.022 × 10^23 atoms
But since Chlorine gas is a molecule;
- 1 mole of Chlorine gas = 2 × 6.022 × 10^23 atoms
But, molar mass of Chlorine gas = 70.906 g/mol
Then;
70.906 g Of chlorine gas = 2 × 6.022 × 10^23 atoms
= 1.20 × 10^24 atoms
Thus;
For 1.2 × 10^24 atoms ;
= ( 70.906 g/mol × 1.2 × 10^24 atoms ) ÷ (1.20 × 10^24 atoms)
<h3>= 70.906 g </h3>
Therefore, 1.20 × 10^24 atoms of chlorine contains a mass of 70.906 g
=