Answer:Chemical reactions occur when chemical bonds between atoms are formed or broken. The substances that go into a chemical reaction are called the reactants, and the substances produced at the end of the reaction are known as the products.
Explanation:
a. 43.1 g
b. 38.2%
<h3>Further explanation</h3>
Given
32.5 grams of NaOH
Required
The theoretical yield of Na₂CO₃
The percent yield
Solution
Reaction
2NaOH(s) + CO₂(g) → Na₂CO₃(s) + H₂O(l)
mol NaOH :
= mass : MW
= 32.5 : 40 g/mol
= 0.8125
mol Na₂CO₃ from the equation :
= 1/2 x mol NaOH
= 1/2 x 0.8125
= 0.40625
a.
Mass Na₂CO₃ :
= mol x MW Na₂CO₃
= 0.40625 x 106 g/mol
= 43.0625≈43.1 g
b. % yield = (actual/theoretical) x 100%
%yield = 16.45/43.1 x 1005
%yield = 38.17%≈38.2%
There was no equipment to create temperature difference in the water
hope this helps and can i get a brainly?
btw i make deals, if thi is wrong i own you ten questions you can ask me on my pf for free and i'll do it!
Given the balanced equation:
( Reaction type : double replacement)
CaF2 + H2SO4 → CaSO4 + 2HFI
We can determine the number of grams prepared from the quantity of 75.0 H2SO4, and 63.0g of CaF2 by converting these grams to moles per substance.
This can be done by evaluating the atomic mass of each element of the substance, and totaling it to find the molecular mass.
For H2SO4 or hydrogen sulfate it's molecular mass is the sum of the quantity of atomic mass per element. H×2 + S×1 + O×4 = ≈1.01×2 + ≈32.06×1 + ≈16×4 = 2.02 + 32.06 + 64 = 98.08 u (Dalton's or Da) or g / mol.
For CaF2 or calcium fluoride, it's molecular mass adds 1 atomic mass of calcium and 2 atomic masses of fluoride due to the number of atoms.
Ca×1 + F×2 = ≈40.07×1 + ≈19×2 = 40.08 + 38 = 78.07 u (Da or Dalton's) or g / mol.