A regular octagon has an apothem measuring 10 in. and a perimeter of 66.3 in. What is the area of the octagon, rounded to the ne
arest square inch? 88 in.2 175 in.2 332 in.2 700 in.2
2 answers:
<h2>
Hello!</h2>
The answer is: ![332in^{2}](https://tex.z-dn.net/?f=332in%5E%7B2%7D)
<h2>
Why?</h2>
From the statement we know that the octagon has a apothem of 10in and a perimeter of 66.3in, and we are asked to find the area of the octagon.
We can use the following formula:
![A=\frac{Perimeter*Apothem}{2}](https://tex.z-dn.net/?f=A%3D%5Cfrac%7BPerimeter%2AApothem%7D%7B2%7D)
Substituting the given information into the area formula, we have:
![A=\frac{66.3in*10in}{2}\\\\A=\frac{663in}{2}=331.5in^{2}](https://tex.z-dn.net/?f=A%3D%5Cfrac%7B66.3in%2A10in%7D%7B2%7D%5C%5C%5C%5CA%3D%5Cfrac%7B663in%7D%7B2%7D%3D331.5in%5E%7B2%7D)
Rounding to the nearest number we have that:
331.5 ≈ 332
So, the area of the octagon is: ![332in^{2}](https://tex.z-dn.net/?f=332in%5E%7B2%7D)
Have a nice day!
Answer:
![332in^2](https://tex.z-dn.net/?f=332in%5E2)
Step-by-step explanation:
The area of a regular polygon is calculated using the formula;
![Area=\frac{1}{2}ap](https://tex.z-dn.net/?f=Area%3D%5Cfrac%7B1%7D%7B2%7Dap)
where
is the apothem and p is the perimeter.
It was given that, the apothem is,
and the perimeter is ![p=66.3 in.](https://tex.z-dn.net/?f=p%3D66.3%20in.)
We substitute into the formula to obtain;
![Area=\frac{1}{2}\times10\times66.3in^2](https://tex.z-dn.net/?f=Area%3D%5Cfrac%7B1%7D%7B2%7D%5Ctimes10%5Ctimes66.3in%5E2)
![Area=331.5in^2](https://tex.z-dn.net/?f=Area%3D331.5in%5E2)
To the nearest square inch, we have;
![Area=332in^2](https://tex.z-dn.net/?f=Area%3D332in%5E2)
You might be interested in
Answer:
2,000
Step-by-step explanation:
write out an equation that represents the problem. the original price X fell by 15% to a new price of 1700:
X - (X*15%) = 1700
X(1-0.15) =1700
X=1700/(1-0.15)
X=2,000
convert 15% to decimal form:
15%=0.15
0.188 because the 5 in 0.1875 rounds up
Answer:
first how do I change my name
Answer:
Below
I hope its not too complicated
![x=\frac{\text{W}_0\left(\frac{\ln \left(5\right)}{2e^{\frac{3\ln \left(5\right)}{2}}}\right)}{\ln \left(5\right)}+\frac{3}{2}](https://tex.z-dn.net/?f=x%3D%5Cfrac%7B%5Ctext%7BW%7D_0%5Cleft%28%5Cfrac%7B%5Cln%20%5Cleft%285%5Cright%29%7D%7B2e%5E%7B%5Cfrac%7B3%5Cln%20%5Cleft%285%5Cright%29%7D%7B2%7D%7D%7D%5Cright%29%7D%7B%5Cln%20%5Cleft%285%5Cright%29%7D%2B%5Cfrac%7B3%7D%7B2%7D)
Step-by-step explanation:
![5^{\left(-x\right)}+7=2x+4\\\\\mathrm{Prepare}\:5^{\left(-x\right)}+7=2x+4\:\mathrm{for\:Lambert\:form}:\quad 1=\left(2x-3\right)e^{\ln \left(5\right)x}\\\\\mathrm{Rewrite\:the\:equation\:with\:}\\\left(x-\frac{3}{2}\right)\ln \left(5\right)=u\mathrm{\:and\:}x=\frac{u}{\ln \left(5\right)}+\frac{3}{2}\\\\1=\left(2\left(\frac{u}{\ln \left(5\right)}+\frac{3}{2}\right)-3\right)e^{\ln \left(5\right)\left(\frac{u}{\ln \left(5\right)}+\frac{3}{2}\right)}](https://tex.z-dn.net/?f=5%5E%7B%5Cleft%28-x%5Cright%29%7D%2B7%3D2x%2B4%5C%5C%5C%5C%5Cmathrm%7BPrepare%7D%5C%3A5%5E%7B%5Cleft%28-x%5Cright%29%7D%2B7%3D2x%2B4%5C%3A%5Cmathrm%7Bfor%5C%3ALambert%5C%3Aform%7D%3A%5Cquad%201%3D%5Cleft%282x-3%5Cright%29e%5E%7B%5Cln%20%5Cleft%285%5Cright%29x%7D%5C%5C%5C%5C%5Cmathrm%7BRewrite%5C%3Athe%5C%3Aequation%5C%3Awith%5C%3A%7D%5C%5C%5Cleft%28x-%5Cfrac%7B3%7D%7B2%7D%5Cright%29%5Cln%20%5Cleft%285%5Cright%29%3Du%5Cmathrm%7B%5C%3Aand%5C%3A%7Dx%3D%5Cfrac%7Bu%7D%7B%5Cln%20%5Cleft%285%5Cright%29%7D%2B%5Cfrac%7B3%7D%7B2%7D%5C%5C%5C%5C1%3D%5Cleft%282%5Cleft%28%5Cfrac%7Bu%7D%7B%5Cln%20%5Cleft%285%5Cright%29%7D%2B%5Cfrac%7B3%7D%7B2%7D%5Cright%29-3%5Cright%29e%5E%7B%5Cln%20%5Cleft%285%5Cright%29%5Cleft%28%5Cfrac%7Bu%7D%7B%5Cln%20%5Cleft%285%5Cright%29%7D%2B%5Cfrac%7B3%7D%7B2%7D%5Cright%29%7D)
![Simplify\\\\\mathrm{Rewrite}\:1=\frac{2e^{u+\frac{3}{2}\ln \left(5\right)}u}{\ln \left(5\right)}\:\\\\\mathrm{in\:Lambert\:form}:\quad \frac{e^{\frac{2u+3\ln \left(5\right)}{2}}u}{e^{\frac{3\ln \left(5\right)}{2}}}=\frac{\ln \left(5\right)}{2e^{\frac{3\ln \left(5\right)}{2}}}](https://tex.z-dn.net/?f=Simplify%5C%5C%5C%5C%5Cmathrm%7BRewrite%7D%5C%3A1%3D%5Cfrac%7B2e%5E%7Bu%2B%5Cfrac%7B3%7D%7B2%7D%5Cln%20%5Cleft%285%5Cright%29%7Du%7D%7B%5Cln%20%5Cleft%285%5Cright%29%7D%5C%3A%5C%5C%5C%5C%5Cmathrm%7Bin%5C%3ALambert%5C%3Aform%7D%3A%5Cquad%20%5Cfrac%7Be%5E%7B%5Cfrac%7B2u%2B3%5Cln%20%5Cleft%285%5Cright%29%7D%7B2%7D%7Du%7D%7Be%5E%7B%5Cfrac%7B3%5Cln%20%5Cleft%285%5Cright%29%7D%7B2%7D%7D%7D%3D%5Cfrac%7B%5Cln%20%5Cleft%285%5Cright%29%7D%7B2e%5E%7B%5Cfrac%7B3%5Cln%20%5Cleft%285%5Cright%29%7D%7B2%7D%7D%7D)
![\mathrm{Solve\:}\:\frac{e^{\frac{2u+3\ln \left(5\right)}{2}}u}{e^{\frac{3\ln \left(5\right)}{2}}}=\frac{\ln \left(5\right)}{2e^{\frac{3\ln \left(5\right)}{2}}}:\quad u=\text{W}_0\left(\frac{\ln \left(5\right)}{2e^{\frac{3\ln \left(5\right)}{2}}}\right)\\\\\mathrm{Substitute\:back}\:u=\left(x-\frac{3}{2}\right)\ln \left(5\right),\:\mathrm{solve\:for}\:x](https://tex.z-dn.net/?f=%5Cmathrm%7BSolve%5C%3A%7D%5C%3A%5Cfrac%7Be%5E%7B%5Cfrac%7B2u%2B3%5Cln%20%5Cleft%285%5Cright%29%7D%7B2%7D%7Du%7D%7Be%5E%7B%5Cfrac%7B3%5Cln%20%5Cleft%285%5Cright%29%7D%7B2%7D%7D%7D%3D%5Cfrac%7B%5Cln%20%5Cleft%285%5Cright%29%7D%7B2e%5E%7B%5Cfrac%7B3%5Cln%20%5Cleft%285%5Cright%29%7D%7B2%7D%7D%7D%3A%5Cquad%20u%3D%5Ctext%7BW%7D_0%5Cleft%28%5Cfrac%7B%5Cln%20%5Cleft%285%5Cright%29%7D%7B2e%5E%7B%5Cfrac%7B3%5Cln%20%5Cleft%285%5Cright%29%7D%7B2%7D%7D%7D%5Cright%29%5C%5C%5C%5C%5Cmathrm%7BSubstitute%5C%3Aback%7D%5C%3Au%3D%5Cleft%28x-%5Cfrac%7B3%7D%7B2%7D%5Cright%29%5Cln%20%5Cleft%285%5Cright%29%2C%5C%3A%5Cmathrm%7Bsolve%5C%3Afor%7D%5C%3Ax)
![\mathrm{Solve\:}\:\left(x-\frac{3}{2}\right)\ln \left(5\right)=\text{W}_0\left(\frac{\ln \left(5\right)}{2e^{\frac{3\ln \left(5\right)}{2}}}\right):\\\quad x=\frac{\text{W}_0\left(\frac{\ln \left(5\right)}{2e^{\frac{3\ln \left(5\right)}{2}}}\right)}{\ln \left(5\right)}+\frac{3}{2}](https://tex.z-dn.net/?f=%5Cmathrm%7BSolve%5C%3A%7D%5C%3A%5Cleft%28x-%5Cfrac%7B3%7D%7B2%7D%5Cright%29%5Cln%20%5Cleft%285%5Cright%29%3D%5Ctext%7BW%7D_0%5Cleft%28%5Cfrac%7B%5Cln%20%5Cleft%285%5Cright%29%7D%7B2e%5E%7B%5Cfrac%7B3%5Cln%20%5Cleft%285%5Cright%29%7D%7B2%7D%7D%7D%5Cright%29%3A%5C%5C%5Cquad%20x%3D%5Cfrac%7B%5Ctext%7BW%7D_0%5Cleft%28%5Cfrac%7B%5Cln%20%5Cleft%285%5Cright%29%7D%7B2e%5E%7B%5Cfrac%7B3%5Cln%20%5Cleft%285%5Cright%29%7D%7B2%7D%7D%7D%5Cright%29%7D%7B%5Cln%20%5Cleft%285%5Cright%29%7D%2B%5Cfrac%7B3%7D%7B2%7D)
Answer:
the blue model
20 birds in all
Step-by-step explanation: