The answer is x=47/4-y/2+5z/4
<h3>Domain: (-5, 3]</h3><h3>Range: [-4, 5)</h3>
========================================================
Explanation:
The domain is the set of allowed x values. In terms of a graph, we look at the left most point to see that x = -5 is the smallest x value possible. However, there's an open hole at this endpoint, so -5 itself is actually not part of the domain. So x must be larger than -5. At the same time, x can be as large as x = 3. Look at the very right tip of the graph to find this x value.
So x spans from -5 to 3, excluding -5 but including 3. We would write
which converts to the interval notation (-5, 3]. Note the mix of curved parenthesis and square bracket. The curved parenthesis means to exclude the endpoint, while the square bracket means include the endpoint.
-----------
The range is the set of possible y outputs. Find out the lowest point of the graph. That is when y = -4 and this value is included due to the filled in circle at the endpoint. But we do not include the largest y value y = 5 as there's an open hole at this endpoint.
So the range is the set of y values such that
which in interval notation would be written as [-4, 5)
-----------
So in short, you're looking for the min and max of x and y to get the domain and range respectively. Be sure to exclude any values where there are open holes as those do not count as part of the graph.
Answer: the rate uphill is 6 mph.
The rate downhill is 10 mph
Step-by-step explanation:
Let x represent the rate at which the jogger ran uphill.
The jogger runs 4 miles per hour faster downhill than uphill. This means that speed at which the jogger ran downhill is (x + 4) mph
Time = distance/speed
if the jogger can runs 5 miles downhill, then the time taken to run downhill is
5/(x + 4)
At the same time, the jogger runs 3 miles uphill. It means that the time taken to run uphill is
3/x
Since the time is the same, it means that
5/(x + 4) = 3/x
Cross multiplying, it becomes
5 × x = 3(x + 4)
5x = 3x + 12
5x - 3x = 12
2x = 12
x = 12/2
x = 6
The rate downhill is 6 + 4 = 10 mph
first off, let's split the triplet into two equations, then from there on we'll do substitution.
![\cfrac{y}{x-z}=\cfrac{x}{y}=\cfrac{x+y}{z}\implies \begin{cases} \cfrac{y}{x-z}=\cfrac{x}{y}\\[2em] \cfrac{x}{y}=\cfrac{x+y}{z} \end{cases} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{using the 1st equation}}{\cfrac{y}{x-z}=\cfrac{x}{y}\implies }y^2=\underline{x^2-xz} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{using the 2nd equation}}{\cfrac{x}{y}=\cfrac{x+y}{z}\implies }xz=xy+y^2\implies \stackrel{\textit{substituting for }y^2}{xz=xy+(\underline{x^2-xz})}](https://tex.z-dn.net/?f=%5Ccfrac%7By%7D%7Bx-z%7D%3D%5Ccfrac%7Bx%7D%7By%7D%3D%5Ccfrac%7Bx%2By%7D%7Bz%7D%5Cimplies%20%5Cbegin%7Bcases%7D%20%5Ccfrac%7By%7D%7Bx-z%7D%3D%5Ccfrac%7Bx%7D%7By%7D%5C%5C%5B2em%5D%20%5Ccfrac%7Bx%7D%7By%7D%3D%5Ccfrac%7Bx%2By%7D%7Bz%7D%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Busing%20the%201st%20equation%7D%7D%7B%5Ccfrac%7By%7D%7Bx-z%7D%3D%5Ccfrac%7Bx%7D%7By%7D%5Cimplies%20%7Dy%5E2%3D%5Cunderline%7Bx%5E2-xz%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Busing%20the%202nd%20equation%7D%7D%7B%5Ccfrac%7Bx%7D%7By%7D%3D%5Ccfrac%7Bx%2By%7D%7Bz%7D%5Cimplies%20%7Dxz%3Dxy%2By%5E2%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bsubstituting%20for%20%7Dy%5E2%7D%7Bxz%3Dxy%2B%28%5Cunderline%7Bx%5E2-xz%7D%29%7D)
![2xz=xy+x^2\implies 2xz=x(y+x)\implies \cfrac{2xz}{x}=y+x \\\\\\ 2z=y+x\implies 2=\cfrac{y+x}{z}\implies 2=\cfrac{x+y}{z} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{}{ \begin{cases} \cfrac{y}{x-z}=\cfrac{x}{y}\\[2em] \cfrac{x}{y}=\cfrac{x+y}{z} \end{cases}}\implies \begin{cases} \cfrac{y}{x-z}=\cfrac{x}{y}\\[2em] \cfrac{x}{y}=2 \end{cases}\implies \begin{cases} \cfrac{y}{x-z}=2\\[2em] \cfrac{x}{y}=2 \end{cases}](https://tex.z-dn.net/?f=2xz%3Dxy%2Bx%5E2%5Cimplies%202xz%3Dx%28y%2Bx%29%5Cimplies%20%5Ccfrac%7B2xz%7D%7Bx%7D%3Dy%2Bx%20%5C%5C%5C%5C%5C%5C%202z%3Dy%2Bx%5Cimplies%202%3D%5Ccfrac%7By%2Bx%7D%7Bz%7D%5Cimplies%202%3D%5Ccfrac%7Bx%2By%7D%7Bz%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%7D%7B%20%5Cbegin%7Bcases%7D%20%5Ccfrac%7By%7D%7Bx-z%7D%3D%5Ccfrac%7Bx%7D%7By%7D%5C%5C%5B2em%5D%20%5Ccfrac%7Bx%7D%7By%7D%3D%5Ccfrac%7Bx%2By%7D%7Bz%7D%20%5Cend%7Bcases%7D%7D%5Cimplies%20%5Cbegin%7Bcases%7D%20%5Ccfrac%7By%7D%7Bx-z%7D%3D%5Ccfrac%7Bx%7D%7By%7D%5C%5C%5B2em%5D%20%5Ccfrac%7Bx%7D%7By%7D%3D2%20%5Cend%7Bcases%7D%5Cimplies%20%5Cbegin%7Bcases%7D%20%5Ccfrac%7By%7D%7Bx-z%7D%3D2%5C%5C%5B2em%5D%20%5Ccfrac%7Bx%7D%7By%7D%3D2%20%5Cend%7Bcases%7D)
that of course, is only true if x + y, or our numerator doesn't turn into 0, if it does then our fraction becomes 0 and our equation goes south. Keeping in mind that x,y and z are numeric values that correlate like so.