1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeka57 [31]
4 years ago
13

Please help this is due in tommorow! I will mark you as brainliest!

Mathematics
1 answer:
pshichka [43]4 years ago
5 0

Answer:

325.26

Step-by-step explanation:

that's the answer because you have to multiply the top

I have question do we have to do something to the bottom?

You might be interested in
The table show the numbers of balls in the gym 12 basketballs, 18 dodgeballs, 8 soccer balls, 14 tennis balls
Yuri [45]

Answer:

52 total number of balls in the gym

Step-by-step explanation:

12+18=30

30+14=44

44+8=52

7 0
2 years ago
Consider the following. C: counterclockwise around the triangle with vertices (0, 0), (1, 0), and (0, 1), starting at (0, 0)
horsena [70]

Answer:

a.

\mathbf{r_1 = (t,0)  \implies  t = 0 \ to \ 1}

\mathbf{r_2 = (2-t,t-1)  \implies  t = 1 \ to \ 2}

\mathbf{r_3 = (0,3-t)  \implies  t = 2 \ to \ 3}

b.

\mathbf{\int  \limits _{c} F \ dr =\dfrac{11 \sqrt{2}+11}{6}}

Step-by-step explanation:

Given that:

C: counterclockwise around the triangle with vertices (0, 0), (1, 0), and (0, 1), starting at (0, 0)

a. Find a piecewise smooth parametrization of the path C.

r(t) = { 0

If C: counterclockwise around the triangle with vertices (0, 0), (1, 0), and (0, 1),

Then:

C_1 = (0,0) \\ \\  C_2 = (1,0) \\ \\ C_3 = (0,1)

Also:

\mathtt{r_1 = (0,0) + t(1,0) = (t,0) }

\mathbf{r_1 = (t,0)  \implies  t = 0 \ to \ 1}

\mathtt{r_2 = (1,0) + t(-1,1) = (1- t,t) }

\mathbf{r_2 = (2-t,t-1)  \implies  t = 1 \ to \ 2}

\mathtt{r_3 = (0,1) + t(0,-1) = (0,1-t) }

\mathbf{r_3 = (0,3-t)  \implies  t = 2 \ to \ 3}

b Evaluate :

Integral of (x+2y^1/2)ds

\mathtt{\int  \limits ^1_{c1} (x+ 2 \sqrt{y}) ds = \int  \limits ^1_{0} \ (t + 0)  \sqrt{1} } \\ \\ \mathtt{  \int  \limits ^1_{c1} (x+ 2 \sqrt{y}) ds = \begin {pmatrix} \dfrac{t^2}{2} \end {pmatrix} }^1_0 \\ \\  \mathtt{\int  \limits ^1_{c1} (x+ 2 \sqrt{y}) ds = \dfrac{1}{2}}

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds = \int  \limits (x+2 \sqrt{y} \sqrt{(\dfrac{dx}{dt})^2 + (\dfrac{dy}{dt})^2 \ dt } }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds = \int  \limits 2- t + 2\sqrt{t-1}  \ \sqrt{1+1}  }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2} \int  \limits^2_1  2- t + 2\sqrt{t-1} \ dt }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} 2t - \dfrac{t^2}{2}+ \dfrac{2(t-1)^{3/2}}{3} (2)  \end {pmatrix} ^2_1}

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} 2 -\dfrac{1}{2} (4-1)+\dfrac{4}{3} (1)^{3/2} -0 \end {pmatrix} }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} 2 -\dfrac{3}{2} + \dfrac{4}{3} \end {pmatrix} }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} \dfrac{12-9+8}{6} \end {pmatrix} }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} \dfrac{11}{6} \end {pmatrix} }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =   \dfrac{ \sqrt{2}  }{6} \  (11 )}

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =   \dfrac{ 11 \sqrt{2}  }{6}}

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds =  \int  \limits ^3_2 0+2 \sqrt{3-t}   \ \sqrt{0+1} }

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds =  \int  \limits ^3_2 2 \sqrt{3-t}   \ dt}

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds =  \int  \limits^3_2 \begin {pmatrix}  \dfrac{-2(3-t)^{3/2}}{3} (2) \end {pmatrix}^3_2 }

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds = -\dfrac{4}{3} [(0)-(1)]}

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds = -\dfrac{4}{3} [-(1)]}

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds = \dfrac{4}{3}}

\mathtt{\int  \limits _{c} F \ dr =\dfrac{11 \sqrt{2}}{6}+\dfrac{1}{2}+ \dfrac{4}{3}}

\mathtt{\int  \limits _{c} F \ dr =\dfrac{11 \sqrt{2}+3+8}{6}}

\mathbf{\int  \limits _{c} F \ dr =\dfrac{11 \sqrt{2}+11}{6}}

5 0
3 years ago
What is the approximate surface area of a cylinder with a radius of 3 inches and a height of 10 inches?
xxMikexx [17]
245in^2

Curved surface = 2pi x r x h = 2 x 3.1 x 3 x 10 = 186
2 ends = 2 x (Pi x r x r) = 2 x 3.1 x 3 x 3 = 55.8
Total area = 186 + 55.8 = 242in^2 approximately
5 0
3 years ago
Determine whether the given system has a unique solution, no solution, or infinitely many solutions.
victus00 [196]

Answer:

The system has no solution.

Step-by-step explanation:

To find the solution to this system of linear equations

\left\begin{array}{ccccc}-3x_1&+x_2&-2x_3&=&8&\\x_1&+5x_2&-x_3&=&4&\\-x_1&+11x_2&-4x_3&=&1&\end{array}\right

First, state the problem in matrix form, this means, extracting only the numbers, and putting them in a box.

\left[ \begin{array}{ccc|c} -3 & 1 & -2 & 8 \\\\ 1 & 5 & -3 & 4 \\\\ -1 & 11 & -4 & 1 \end{array} \right]

This is called an augmented matrix. The word “augmented” refers to the vertical line, which we draw to remind ourselves where the equals sign belong

Next, transform the augmented matrix to the reduced row echelon form with the help of Row Operations.

Row Operation 1: multiply the 1st row by -1/3

\left[ \begin{array}{ccc|c} 1 & - \frac{1}{3} & \frac{2}{3} & - \frac{8}{3} \\\\ 1 & 5 & -1 & 4 \\\\ -1 & 11 & -4 & 1 \end{array} \right]

Row Operation 2: add -1 times the 1st row to the 2nd row

\left[ \begin{array}{ccc|c} 1 & - \frac{1}{3} & \frac{2}{3} & - \frac{8}{3} \\\\ 0 & \frac{16}{3} & - \frac{5}{3} & \frac{20}{3} \\\\ -1 & 11 & -4 & 1 \end{array} \right]

Row Operation 3: add 1 times the 1st row to the 3rd row

\left[ \begin{array}{ccc|c} 1 & - \frac{1}{3} & \frac{2}{3} & - \frac{8}{3} \\\\ 0 & \frac{16}{3} & - \frac{5}{3} & \frac{20}{3} \\\\ 0 & \frac{32}{3} & - \frac{10}{3} & - \frac{5}{3} \end{array} \right]

Row Operation 4: multiply the 2nd row by 3/16

\left[ \begin{array}{ccc|c} 1 & - \frac{1}{3} & \frac{2}{3} & - \frac{8}{3} \\\\ 0 & 1 & - \frac{5}{16} & \frac{5}{4} \\\\ 0 & 0 & 0 & -15 \end{array} \right]

Row Operation 5: add -32/3 times the 2nd row to the 3rd row

\left[ \begin{array}{ccc|c} 1 &- \frac{1}{3}  & \frac{2}{3} & - \frac{8}{3} \\\\ 0 & 1 & - \frac{5}{16} & \frac{5}{4} \\\\ 0 & 0 & 0 & -15 \end{array} \right]

Row Operation 6: multiply the 3rd row by -1/15

\left[ \begin{array}{ccc|c} 1 &- \frac{1}{3}  & \frac{2}{3} & - \frac{8}{3} \\\\ 0 & 1 & - \frac{5}{16} & \frac{5}{4} \\\\ 0 & 0 & 0 & 1 \end{array} \right]

Row Operation 7: add -5/4 times the 3rd row to the 2nd row

\left[ \begin{array}{ccc|c} 1 &- \frac{1}{3}  & \frac{2}{3} & - \frac{8}{3} \\\\ 0 & 1 & - \frac{5}{16} & 0 \\\\ 0 & 0 & 0 & 1 \end{array} \right]

Row Operation 8: add 8/3 times the 3rd row to the 1st row

\left[ \begin{array}{ccc|c} 1 &- \frac{1}{3}  & \frac{2}{3} & 0 \\\\ 0 & 1 & - \frac{5}{16} & 0 \\\\ 0 & 0 & 0 & 1 \end{array} \right]

Row Operation 9: add 1/3 times the 2nd row to the 1st row

\left[ \begin{array}{cccc} 1 & 0 & \frac{9}{16} & 0 \\\\ 0 & 1 & - \frac{5}{16} & 0 \\\\ 0 & 0 & 0 & 1 \end{array} \right]

The reduced row echelon form of the augmented matrix is

\left[ \begin{array}{cccc} 1 & 0 & \frac{9}{16} & 0 \\\\ 0 & 1 & - \frac{5}{16} & 0 \\\\ 0 & 0 & 0 & 1 \end{array} \right]

which corresponds to the system

\left\begin{array}{ccccc}x_1&&+\frac{9}{16} x_3&=&0&\\&1x_2&-\frac{5}{16}x_3&=&0&\\&&0&=&1&\end{array}\right

Equation 3 cannot be solved, therefore, the system has no solution.

7 0
4 years ago
Find the distance between the two points rounding to the nearest tenth (if necessary). (1,−7) and (4,−5)
Hitman42 [59]

Answer:

5

Step-by-step explanation:

distance formula \sqrt{(4-1)^{2} + (-5+7)^{2}

8 0
3 years ago
Other questions:
  • What is this answer
    8·1 answer
  • What is 9 hundreds 23 tens 15 ones numerically
    9·2 answers
  • What value of n makes the equation true?<br>-1/5n + 7=2<br>n=​
    5·2 answers
  • A team of engineers must design a fuel tank in the shape of a cone (excluding the base) is given by the formula S=Pi x square ro
    9·2 answers
  • Rita is selecting a sandwich at the deli. The deli has four types of meat, three types of cheese and two types of bread. A delux
    5·2 answers
  • Noah ran 2 1/2 miles in 3/5 hour. How far does he run in 1 hour?
    14·1 answer
  • What is the domain of the relation? On a coordinate plane, a graph of an image has 3 connected lines. The first line goes from (
    14·2 answers
  • --
    13·1 answer
  • PLEASE HELP!!!!!!!! 40 POINTS!!!!!!
    9·1 answer
  • If f(x) = 3x²+2 and g(x)=x2-9, find (f- g)(x).
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!