Answer:
<em>(</em><em>f-g</em><em>)</em><em>(</em><em>x</em><em>)</em><em>=</em><em> </em><em>-3x</em><em>^</em><em>3</em><em> </em><em>+</em><em> </em><em>x</em><em>^</em><em>2</em><em> </em><em>+</em><em> </em><em>6x</em>
<em>(</em><em>f</em><em>+</em><em>g</em><em>)</em><em>(</em><em>×</em><em>)</em><em>=</em><em> </em><em>3x</em><em>^</em><em>3</em><em> </em><em>+</em><em> </em><em>x</em><em>^</em><em>2</em><em> </em><em>+</em><em> </em><em>6x</em>
<em>(</em><em>f</em><em>•</em><em>g</em><em>)</em><em>(</em><em>2</em><em>)</em><em>=</em><em> </em><em>6x</em><em>^</em><em>3</em><em> </em><em>+</em><em> </em><em>36x</em><em>^</em><em>3</em>
Step-by-step explanation:
I hope that helps
√20 the prime factors are 2, 2, 5 so
-2 * √4 *√5
-2*2*√5
-4√5 is the first part ,
now for √125, use prime factorization ,
all prime factors that make up 125 is
5, 5, 5 so √125 can be separated to √25√5 and √25 = 5 so the second part is 5√5.
now -4√5 - 5√5 = -9√5.
therefore answer is -9√5
Use point slope formula y-y1=m(x-x1)
You are told that y=-x+3. This equation is of the form y=mx+b. Where m=-1. m is the slope. And you have a point (x1,y1) that is (3,-2). With all of this in mind, you then plug all of these details into the point slope formula y-y1=m(x-x1)
In point slope form, you have the following:
y-(-2)=-1(x-3).
To turn this into slope intercept form, simplify y-(-2) to get y+2 and distribute in the -1 to get:
y+2=-x+3
Subtract 2 from both sides to get
y=-x+1
In slope intercept form, the answer is
y=-x+1 and in point slope form, the answer is y+2=-x+3
Hope this helps!!!
yeet
first brand quantity is x
2nd brand quantity is y
x+y=30
0.3x+0.55y=0.35(30) or 0.3x+0.55y=10.5
solve for x and y
multiply first equation by -0.3
-0.3x-0.3y=-9
add to 2nd equation
0.3x-0.3y=-9
<u>0.3x+0.55y=10.5 +</u>
0x+0.25y=1.5
0.25y=1.5
divide both sides by 0.25
y=6
sub back
x+y=30
x+6=30
x=24
you need 24 gallons of the first brand and 6 gallons of the 2nd brand
The variance of a constant is zero. Rule 2. Adding a constant value, c, to a random variable does not change the variance, because the expectation (mean) increases by the same amount. ... Multiplying a random variable by a constant increases the variance by the square of the constant.