<span>We can assume that the horizontal surface has no friction and the pulley is massless. We can use Newton's second law to set up an equation.
F = Ma
F is the net force
M is the total mass of the system
a is the acceleration
a = F / M
a = (mb)(g) / (ma + mb)
a = (6.0 kg)(9.80 m/s^2) / (6.0 kg + 14.0 kg)
a = 58.8 N / 20 kg
a = 2.94 m/s^2
The magnitude of the acceleration of the system is 2.94 m/s^2</span>
<em><u>throwing a ball up initially has a lot of kinetic energy because it is moving upwards ( kinetic energy is energy which a body possesses by virtue of being in motion.) this all then get converted to gravitational potential energy, and for a moment it is stationary before it begins to fall again. by the time it has returned again, all the gravitational potential energy has turned back into kinetic.</u></em>
It considered as Zero Gage pressure.
The orbiting speed of the satellite orbiting around the planet Glob is 60.8m/s.
To find the answer, we need to know about the orbital velocity a satellite.
<h3>What's the expression of orbital velocity of a satellite?</h3>
- Mathematically, orbital velocity= √(GM/r)
- G= gravitational constant= 6.67×10^(-11) Nm²/kg², M = mass of sun , r= radius of orbit
<h3>What's the orbital velocity of the satellite in a circular orbit with a radius of 1.45×10⁵ m around the planet Glob of mass 7.88×10¹⁸ kg?</h3>
- Here, M= 7.88×10¹⁸ kg, r= 1.45×10⁵ m
- Orbital velocity of the orbiting satellite = √(6.67×10^(-11)×7.88×10¹⁸/1.45×10⁵)
= 60.8m/s
Thus, we can conclude that the speed of the satellite orbiting the planet Glob is 60.8m/s.
Learn more about the orbital velocity here:
brainly.com/question/22247460
#SPJ1
Answer:
Equal to the weight of the object
Explanation:
There are two forces acting on the object hanging on the string:
- The tension in the string, T, acting upward
- The weight of the object, mg, acting downward
We can write Newton's second law as:

where a is the acceleration of the object.
Here we are told that the elevator is moving at constant speed: this means that the acceleration of the object is zero, therefore a = 0 and the equation becomes

therefore, the tension in the string is equal to the weight of the object.