<span>I believe this happens because when you rub the balloon on the carpet or fabric, the connection or contact of that jumbles up the atoms and they receive the energy which makes your hair as the question said 'stand on end' </span>
The effective spring constant of the system is 39.6 N/m
Explanation:
The frequency of oscillation of a spring-mass system is given by

where
k is the spring constant of the system
m is the mass
In this problem, we have:
f = 29 Hz is the frequency of vibration of the eyeball system
m = 7.5 g = 0.0075 kg is the mass
We can therefore re-arrange the equation to find the effective spring constant of the system. We find:

#LearnwithBrainly
Answer: Option (d) is the correct answer.
Explanation:
Article's help people know about the advantages or disadvantages of the product or topic for which it is written.
Basically an article provides an overall scenario about a situation or thing so that readers can decide themselves whether they are in favor or against the thing on which article has been written.
Therefore, we can conclude that out of the given options, to get the reader to understand the two types of signals is most likely the author’s motive for writing the article.
Answer:
The bulbs should be connected in parallel.
Explanation:
We want to find out a way to hook up 2 light bulbs and a battery so that when one bulb burns out or is disconnected the other bulbs stays lit.
We must connect the two bulbs in parallel so that even when one bulb is burns out, it will have no effect on the other bulb and the 2nd bulb will keep on working. The current flowing in each bulb will depend upon the resistance of each bulb and the voltage will be same across each bulb.
On the other hand, if we use a series circuit then if one bulb burns out then the there is no flow of current in the circuit and therefore, the second bulb will not be operational.
The current flowing through each bulb is given by
I = V/R
The voltage across each bulb is given by
V = IReq
Where I is the current and Req is the equivalent resistance of the two bulbs connected in parallel and is given by
Req = (R₁*R₂)/(R₁+R₂)
The connection diagram is attached where two bulbs are connected in parallel and are power with a battery.
Answer:
e. All of these statements are false.
Explanation:
As we know that heat transfer take place from high temperature to low temperature.
It is possible to convert all work into heat but it is not possible to convert all heat in to work some heat will be reject to the surrounding.
The first law of thermodynamics is the energy conservation law.
Second law of thermodynamics states that it is impossible to construct a device which convert all energy into work without rejecting the heat to the surrounding.
By using heat pump ,heat can transfer from cooler body to the hotter body.
Therefore all the answer is False.