Letter B because it is gaining more potential energy as it SLOWLY climbs up the hill.
the less motion the more potential energy there is
 
        
                    
             
        
        
        
Answer:
 or 0.32 μm.
 or 0.32 μm. 
Explanation:
Given:
The radiations are UV radiation.
The frequency of the radiations absorbed (f) = 
The wavelength of the radiations absorbed (λ) = ?
We know that, the speed of ultraviolet radiations is same as speed of light.
So, speed of UV radiation (v) = 
Now, we also know that, the speed of the electromagnetic radiation is related to its frequency and wavelength and is given as:

Now, expressing the above equation in terms of wavelength 'λ', we have:

Now, plug in the given values and solve for 'λ'. This gives,
![\lambda=\frac{3\times 10^8\ m/s}{9.38\times 10^{14}\ Hz}\\\\\lambda=3.2\times 10^{-7}\ m\\\\\lambda=3.2\times 10^{-7}\times 10^{6}\ \mu m\ [1\ m=10^6\ \mu m]\\\\\lambda=3.2\times 10^{-1}=0.32\ \mu m](https://tex.z-dn.net/?f=%5Clambda%3D%5Cfrac%7B3%5Ctimes%2010%5E8%5C%20m%2Fs%7D%7B9.38%5Ctimes%2010%5E%7B14%7D%5C%20Hz%7D%5C%5C%5C%5C%5Clambda%3D3.2%5Ctimes%2010%5E%7B-7%7D%5C%20m%5C%5C%5C%5C%5Clambda%3D3.2%5Ctimes%2010%5E%7B-7%7D%5Ctimes%2010%5E%7B6%7D%5C%20%5Cmu%20m%5C%20%5B1%5C%20m%3D10%5E6%5C%20%5Cmu%20m%5D%5C%5C%5C%5C%5Clambda%3D3.2%5Ctimes%2010%5E%7B-1%7D%3D0.32%5C%20%5Cmu%20m)
Therefore, the wavelength of the radiations absorbed by the ozone is nearly  or 0.32 μm.
 or 0.32 μm. 
 
        
             
        
        
        
Answer:
A, and D are the answers
Explanation:
The pulley. It is located where the bicycle chain and gears are. The chain is wrapped around the pulley which turns and causes the wheel to turn on its axle.
 
        
             
        
        
        
Answer:
The focal length of the given spherical mirror is 20cm.
Explanation:
plz follow me
 
        
             
        
        
        
NO musical instrument produces a 'pure' tone with only a 
single frequency in it. 
EVERY instrument produces more or less harmonics (multiples)
in addition to the basic frequency it's playing.
The percussion instruments (drums etc) are the richest producers
of bunches of different frequencies.
Fuzzy electric guitars are next richest.
The strings and brass instruments are moderate producers of
harmonics ... I can't remember which is greater than the other.
Then come the woodwinds ... clarinet, oboe, etc.
The closest to 'pure' tones of single frequency are the sounds
made by the flute and piccolo, but even these are far from 'pure'.
The only way to get a true single-frequency sound is from an
electronic 'sine wave' generator.